955 resultados para recombinant interleukin 1beta


Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Interleukin-1 (IL-1) mediates ischemia-reperfusion injury and graft inflammation after heart transplantation. IL-1 affects target cells through two distinct types of transmembrane receptors, type-1 receptor (IL-1R1), which transduces the signal, and the non-signaling type-2 receptor (IL-1R2), which acts as a ligand sink that subtracts IL-1beta from IL-1R1. We analyzed the efficacy of adenovirus (Ad)-mediated gene transfer of a soluble IL-1R2-Ig fusion protein in delaying cardiac allograft rejection and the mechanisms underlying the protective effect. METHODS: IL-1 inhibition by IL-1R2-Ig was tested using an in vitro functional assay whereby endothelial cells preincubated with AdIL-1R2-Ig or control virus were stimulated with recombinant IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and urokinase-type plasminogen activator (u-PA) induction was measured by zymography. AdIL-1R2-Ig was delivered to F344 rat donor hearts ex vivo, which were placed in the abdominal position in LEW hosts. Intragraft inflammatory cell infiltrates and proinflammatory cytokine expression were analyzed by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. RESULTS: IL-1R2-Ig specifically inhibited IL-1beta-induced u-PA responses in vitro. IL-1R2-Ig gene transfer reduced intragraft monocytes/macrophages and CD4(+) cell infiltrates (p<0.05), TNF-alpha and transforming growth factor-beta (TGF-beta) expression (p<0.05), and prolonged graft survival (15.6+/-5.7 vs 10.3+/-2.5 days with control vector and 10.1+/-2.1 days with buffer alone; p<0.01). AdIL-1R2-Ig combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone (19.4+/-3.0 vs 15.9+/-1.8 days; p<0.05). CONCLUSIONS: Soluble IL-1 type-2 receptor gene transfer attenuates cardiac allograft rejection in a rat model. IL-1 inhibition may be useful as an adjuvant therapy in heart transplantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-1 receptor (IL-1RI) is a master regulator of inflammation and innate immunity. When triggered by IL-1beta, IL-1RI aggregates with IL-1R-associated protein (IL-1RAcP) and forms a membrane proximal signalosome that potently activates downstream signaling cascades. IL-1beta also rapidly triggers endocytosis of IL-1RI. Although internalization of IL-1RI significantly impacts signaling, very little is known about trafficking of IL-1RI and therefore about precisely how endocytosis modulates the overall cellular response to IL-1beta. Upon internalization, activated receptors are often sorted through endosomes and delivered to lysosomes for degradation. This is a highly regulated process that requires ubiquitination of cargo proteins as well as protein-sorting complexes that specifically recognize ubiquitinated cargo. Here, we show that IL-1beta induces ubiquitination of IL-1RI and that via these attached ubiquitin groups, IL-1RI interacts with the ubiquitin-binding protein Tollip. By using an assay to follow trafficking of IL-1RI from the cell surface to late endosomes and lysosomes, we demonstrate that Tollip is required for sorting of IL-1RI at late endosomes. In Tollip-deficient cells and cells expressing only mutated Tollip (incapable of binding IL-1RI and ubiquitin), IL-1RI accumulates on late endosomes and is not efficiently degraded. Furthermore, we show that IL-1RI interacts with Tom1, an ubiquitin-, clathrin-, and Tollip-binding protein, and that Tom1 knockdown also results in the accumulation of IL-1RI at late endosomes. Our findings suggest that Tollip functions as an endosomal adaptor linking IL-1RI, via Tom1, to the endosomal degradation machinery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La thérapie génique représente l'un des défis de la médecine des prochaines décennies dont la réussite dépend de la capacité d'acheminer l'ADN thérapeutique jusqu'à sa cible. Des structures non virales ont été envisagées, dont le chitosane, polymère cationique qui se combine facilement à l’ADN. Une fois le complexe formé, l’ADN est protégé des nucléases qui le dégradent. Le premier objectif de l'étude est de synthétiser et ensuite évaluer différentes nanoparticules de chitosane et choisir la mieux adaptée pour une efficacité de transfection sélective in vitro dans les cellules carcinomes épidermoïdes (KB). Le deuxième objectif de l'étude est d'examiner in vivo les effets protecteurs du gène de l'IL-1Ra (bloqueur naturel de la cytokine inflammatoire, l’Interleukine-1β) complexé aux nanoparticules de chitosane sélectionnées dans un modèle d'arthrite induite par un adjuvant (AIA) chez le rat. Les nanoparticules varient par le poids moléculaire du chitosane (5, 25 et 50 kDa), et la présence ou l’absence de l’acide folique (FA). Des mesures macroscopiques de l’inflammation seront évaluées ainsi que des mesures de concentrations de l’Interleukine-1β, Prostaglandine E2 et IL-1Ra humaine secrétés dans le sérum. Les nanoparticules Chitosane-ADN en présence de l’acide folique et avec du chitosane de poids moléculaire de 25 kDa, permettent une meilleure transfection in vitro. Les effets protecteurs des nanoparticules contenant le gène thérapeutique étaient évidents suite à la détection de l’IL-1Ra dans le sérum, la baisse d'expressions des facteurs inflammatoires, l’Interleukine-1 et la Prostaglandine-E2 ainsi que la diminution macroscopique de l’inflammation. Le but de cette étude est de développer notre méthode de thérapie génique non virale pour des applications cliniques pour traiter l’arthrite rhumatoïde et d’autres maladies humaines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three of the predominant features of apoptosis are internucleosomal DNA fragmentation, plasma membrane bleb formation, and retraction of cell processes. We demonstrate that actin is a substrate for the proapoptotic cysteine protease interleukin 1beta-converting enzyme. Actin cleaved by interleukin 1beta-converting enzyme can neither inhibit DNase I nor polymerize to its filamentous form as effectively as intact actin. These findings suggest a mechanism for the coordination of the proteolytic, endonucleolytic, and morphogenetic aspects of apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To assess the associations between alcohol consumption and cytokine levels (interleukin-1beta - IL-1β; interleukin-6 - IL-6 and tumor necrosis factor-α - TNF-α) in a Caucasian population. Population sample of 2884 men and 3201 women aged 35-75. Alcohol consumption was categorized as nondrinkers, low (1-6 drinks/week), moderate (7-13/week) and high (14+/week). No difference in IL-1β levels was found between alcohol consumption categories. Low and moderate alcohol consumption led to lower IL-6 levels: median (interquartile range) 1.47 (0.70-3.51), 1.41 (0.70-3.32), 1.42 (0.66-3.19) and 1.70 (0.83-4.39) pg/ml for nondrinkers, low, moderate and high drinkers, respectively, p<0.01, but this association was no longer significant after multivariate adjustment. Compared to nondrinkers, moderate drinkers had the lowest odds (Odds ratio=0.86 (0.71-1.03)) of being in the highest quartile of IL-6, with a significant (p<0.05) quadratic trend. Low and moderate alcohol consumption led to lower TNF-α levels: 2.92 (1.79-4.63), 2.83 (1.84-4.48), 2.82 (1.76-4.34) and 3.15 (1.91-4.73) pg/ml for nondrinkers, low, moderate and high drinkers, respectively, p<0.02, and this difference remained borderline significant (p=0.06) after multivariate adjustment. Moderate drinkers had a lower odds (0.81 [0.68-0.98]) of being in the highest quartile of TNF-α. No specific alcoholic beverage (wine, beer or spirits) effect was found. Moderate alcohol consumption is associated with lower levels of IL-6 and (to a lesser degree) of TNF-α, irrespective of the type of alcohol consumed. No association was found between IL-1β levels and alcohol consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND:: Attenuated innate immune responses to the intestinal microbiota have been linked to the pathogenesis of Crohn's disease (CD). Recent genetic studies have revealed that hypofunctional mutations of NLRP3, a member of the NOD-like receptor (NLR) superfamily, are associated with an increased risk of developing CD. NLRP3 is a key component of the inflammasome, an intracellular danger sensor of the innate immune system. When activated, the inflammasome triggers caspase-1-dependent processing of inflammatory mediators, such as IL-1β and IL-18. METHODS:: In the current study we sought to assess the role of the NLRP3 inflammasome in the maintenance of intestinal homeostasis through its regulation of innate protective processes. To investigate this role, Nlrp3(-/-) and wildtype mice were assessed in the dextran sulfate sodium and 2,4,6-trinitrobenzenesulfonic acid models of experimental colitis. RESULTS:: Nlrp3(-/-) mice were found to be more susceptible to experimental colitis, an observation that was associated with reduced IL-1β, reduced antiinflammatory cytokine IL-10, and reduced protective growth factor TGF-β. Macrophages isolated from Nlrp3(-/-) mice failed to respond to bacterial muramyl dipeptide. Furthermore, Nlrp3-deficient neutrophils exhibited reduced chemotaxis and enhanced spontaneous apoptosis, but no change in oxidative burst. Lastly, Nlrp3(-/-) mice displayed altered colonic β-defensin expression, reduced colonic antimicrobial secretions, and a unique intestinal microbiota. CONCLUSIONS:: Our data confirm an essential role for the NLRP3 inflammasome in the regulation of intestinal homeostasis and provide biological insight into disease mechanisms associated with increased risk of CD in individuals with NLRP3 mutations. (Inflamm Bowel Dis 2010).