933 resultados para random oracle model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetic properties of nano-crystalline soft magnetic alloys have usually been correlated to structural evolution with heat treatment. However, literature reports pertaining to the study of nano-crystalline thin films are less abundant. Thin films of Fe40Ni38B18Mo4 were deposited on glass substrates under a high vacuum of ≈ 10−6 Torr by employing resistive heating. They were annealed at various temperatures ranging from 373 to 773K based on differential scanning calorimetric studies carried out on the ribbons. The magnetic characteristics were investigated using vibrating sample magnetometry. Morphological characterizations were carried out using atomic force microscopy (AFM), and magnetic force microscopy (MFM) imaging is used to study the domain characteristics. The variation of magnetic properties with thermal annealing is also investigated. From AFM and MFM images it can be inferred that the crystallization temperature of the as-prepared films are lower than their bulk counterparts. Also there is a progressive evolution of coercivity up to 573 K, which is an indication of the lowering of nano-crystallization temperature in thin films. The variation of coercivity with the structural evolution of the thin films with annealing is discussed and a plausible explanation is provided using the modified random anisotropy model

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the thermodynamic properties and the phase diagrams of a multi-spin antiferromagnetic spherical spin-glass model using the replica method. It is a two-sublattice version of the ferromagnetic spherical p-spin glass model. We consider both the replica-symmetric and the one-step replica-symmetry-breaking solutions, the latter being the most general solution for this model. We find paramagnetic, spin-glass, antiferromagnetic and mixed or glassy antiferromagnetic phases. The phase transitions are always of second order in the thermodynamic sense, but the spin-glass order parameter may undergo a discontinuous change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A random-matching model (ofmoney) is formulated in which there is complete public knowledge of the trading histories of a subset of the population, called the banking sector, and no public knowledge of the trading histories of the complement of that subset, called the non bank sector. Each person, whether a banker or a non banker, is assumed to have the technological capability to create indivisible and durable objects called notes. If outside money is indivisible and sufficiently scarce, then the optimal mechanism is shown to have note issue and note destruction (redemption) by members of the banking sector.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Random regression models have been widely used to estimate genetic parameters that influence milk production in Bos taurus breeds, and more recently in B. indicus breeds. With the aim of finding appropriate random regression model to analyze milk yield, different parametric functions were compared, applied to 20,524 test-day milk yield records of 2816 first-lactation Guzerat (B. indicus) cows in Brazilian herds. The records were analyzed by random regression models whose random effects were additive genetic, permanent environmental and residual, and whose fixed effects were contemporary group, the covariable cow age at calving (linear and quadratic effects), and the herd lactation curve. The additive genetic and permanent environmental effects were modeled by the Wilmink function, a modified Wilmink function (with the second term divided by 100), a function that combined third-order Legendre polynomials with the last term of the Wilmink function, and the Ali and Schaeffer function. The residual variances were modeled by means of 1, 4, 6, or 10 heterogeneous classes, with the exception of the last term of the Wilmink function, for which there were 1, from 0.20 to 0.33. Genetic correlations between adjacent records were high values (0.83-0.99), but they declined when the interval between the test-day records increased, and were negative between the first and last records. The model employing the Ali and Schaeffer function with six residual variance classes was the most suitable for fitting the data. © FUNPEC-RP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likelihood. In the MTM analysis, the likelihood ratio test was used to determine the significance of random effects included in the model and to define the most appropriate model. All random effects were significant and included in the final model. In the RRM analysis, different adjustments of polynomial orders were compared for 5 different criteria to choose the best fit model. An RRM of third order for the direct additive genetic, direct permanent environmental, maternal additive genetic, and maternal permanent environment effects was sufficient to model variance structures in the growth trajectory of the animals. The (co)variance components were generally similar in MTM and RRM. Direct heritabilities of MTM were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 0.45, respectively. Additive direct correlations were mostly positive and of high magnitude, being highest at closest ages. Considering the results and that pre-adjustment of the weights to standard ages is not required, RRM is recommended for genetic evaluation of Simmental beef cattle in Brazil. ©FUNPEC-RP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High pressure NMR spectroscopy has developed into an important tool for studying conformational equilibria of proteins in solution. We have studied the amide proton and nitrogen chemical shifts of the 20 canonical amino acids X in the random-coil model peptide Ac-Gly-Gly-X-Ala-NH2, in a pressure range from 0.1 to 200 MPa, at a proton resonance frequency of 800 MHz. The obtained data allowed the determination of first and second order pressure coefficients with high accuracy at 283 K and pH 6.7. The mean first and second order pressure coefficients <B-1(15N)> and <B-2(15N)> for nitrogen are 2.91 ppm/GPa and -2.32 ppm/GPa(2), respectively. The corresponding values <B-1(1H)> and <B-2(1H)> for the amide protons are 0.52 ppm/GPa and -0.41 ppm/GPa(2). Residual dependent (1)J(1H15N)-coupling constants are shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monte Carlo simulation was used to evaluate properties of a simple Bayesian MCMC analysis of the random effects model for single group Cormack-Jolly-Seber capture-recapture data. The MCMC method is applied to the model via a logit link, so parameters p, S are on a logit scale, where logit(S) is assumed to have, and is generated from, a normal distribution with mean μ and variance σ2 . Marginal prior distributions on logit(p) and μ were independent normal with mean zero and standard deviation 1.75 for logit(p) and 100 for μ ; hence minimally informative. Marginal prior distribution on σ2 was placed on τ2=1/σ2 as a gamma distribution with α=β=0.001 . The study design has 432 points spread over 5 factors: occasions (t) , new releases per occasion (u), p, μ , and σ . At each design point 100 independent trials were completed (hence 43,200 trials in total), each with sample size n=10,000 from the parameter posterior distribution. At 128 of these design points comparisons are made to previously reported results from a method of moments procedure. We looked at properties of point and interval inference on μ , and σ based on the posterior mean, median, and mode and equal-tailed 95% credibility interval. Bayesian inference did very well for the parameter μ , but under the conditions used here, MCMC inference performance for σ was mixed: poor for sparse data (i.e., only 7 occasions) or σ=0 , but good when there were sufficient data and not small σ .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Niche apportionment models have only been applied once to parasite communities. Only the random assortment model (RA), which indicates that species abundances are independent from each other and that interspecific competition is unimportant, provided a good fit to 3 out of 6 parasite communities investigated. The generality of this result needs to be validated, however. In this study we apply 5 niche apportionment models to the parasite communities of 14 fish species from the Great Barrier Reef. We determined which model fitted the data when using either numerical abundance or biomass as an estimate of parasite abundance, and whether the fit of niche apportionment models depends on how the parasite community is defined (e.g. ecto, endoparasites or all parasites considered together). The RA model provided a good fit for the whole community of parasites in 7 fish species when using biovolume (as a surrogate of biomass) as a measure of species abundance. The RA model also fitted observed data when ecto- and endoparasites were considered separately, using abundance or biovolume, but less frequently. Variation in fish sizes among species was not associated with the probability of a model fitting the data. Total numerical abundance and biovolume of parasites were not related across host species, suggesting that they capture different aspects of abundance. Biovolume is not only a better measurement to use with niche-orientated models, it should also be the preferred descriptor to analyse parasite community structure in other contexts. Most of the biological assumptions behind the RA model, i.e. randomness in apportioning niche space, lack of interspecific competition, independence of abundance among different species, and species with variable niches in changeable environments, are in accordance with some previous findings on parasite communities. Thus, parasite communities may generally be unsaturated with species, with empty niches, and interspecific interactions may generally be unimportant in determining parasite community structure.