920 resultados para radial basis functions
Resumo:
A aproximação fisionômica é o método que busca, a partir do crânio, simular a fotografia de um indivíduo quando em vida. Deve ser empregada como último recurso, na busca de desaparecidos, quando não houver possibilidade de aplicação de um método válido de identificação. O objetivo deste estudo foi obter a aproximação fisionômica, a partir de um crânio seco e de tomografia computadorizada multislice de indivíduos vivos, através da função de base radial hermitiana (FBRH). Constituiu-se também em avaliar o resultado da mesma quanto ao reconhecimento. Na primeira etapa do estudo, foi utilizada a imagem escaneada de um crânio seco, de origem desconhecida, com o intuito de avaliar se a quantidade de pontos obtidos seria suficiente para aplicação da FBRH e consequente reconstrução da superfície facial. Na segunda fase, foram utilizadas três tomografias de indivíduos vivos, para análise da semelhança alcançada entre a face escaneada e as aproximações faciais. Nesta etapa, foi aplicada uma associação de diferentes metodologias já publicadas, para reconstrução de uma mesma região da face, a partir de um mesmo crânio. Na última etapa, foram simuladas situações de reconhecimento com familiares e amigos dos indivíduos doadores das tomografias. Observou-se que a metodologia de FBRH pode ser empregada em aproximação fisionômica. Houve reconhecimento positivo nos três sujeitos estudados, sendo que, em dois deles, os resultados foram ainda mais significativos. Desta forma, conclui-se que a metodologia é rápida, objetiva e proporciona o reconhecimento. Esta permite a criação de múltiplas versões de aproximações fisionômicas a partir do mesmo crânio, o que amplia as possibilidades de reconhecimento. Observou-se ainda que a técnica não exige habilidade artística do profissional.
Resumo:
A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.
Resumo:
Q. Meng and M. H Lee, Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks, Connection Science, 19(1), pp 25-52, 2007.
Resumo:
Q. Meng and M.H. Lee, 'Error-driven active learning in growing radial basis function networks for early robot learning', 2006 IEEE International Conference on Robotics and Automation (IEEE ICRA 2006), 2984-90, Orlando, Florida, USA.
Resumo:
Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.