977 resultados para quantum gravity
Resumo:
Recently, in [3] Horava and Melby-Thompson proposed a nonrelativistic gravity theory with extended gauge symmetry that is free of the spin-0 graviton. We propose a minimal substitution recipe to implement this extended gauge symmetry which reproduces the results obtained by them. Our prescription has the advantage of being manifestly gauge invariant and immediately generalizable to other fields, like matter. We briefly discuss the coupling of gravity with scalar and vector fields found by our method. We show also that the extended gauge invariance in gravity does not force the value of. to be lambda = 1 as claimed in [3]. However, the spin-0 graviton is eliminated even for general lambda.
Resumo:
We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.
Resumo:
In the context of the teleparallel equivalent of general relativity, the Weitzenbock manifold is considered as the limit of a suitable sequence of discrete lattices composed of an increasing number of smaller and smaller simplices, where the interior of each simplex (Delaunay lattice) is assumed to be flat. The link lengths l between any pair of vertices serve as independent variables, so that torsion turns out to be localized in the two-dimensional hypersurfaces (dislocation triangle, or hinge) of the lattice. Assuming that a vector undergoes a dislocation in relation to its initial position as it is parallel transported along the perimeter of the dual lattice (Voronoi polygon), we obtain the discrete analogue of the teleparallel action, as well as the corresponding simplicial vacuum field equations.
Resumo:
An expression for computing the effective non-relativistic potential for higher-derivative gravity in D dimensions is obtained.
Resumo:
A non-integrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity to electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.
Resumo:
We study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.
Resumo:
We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. © 2012 Elsevier Inc.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.