967 resultados para pure water


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop a simplified model of choked flow in pipes for CO2-water solutions as an important step in the modelling of a whole hydraulic system with the intention of eliminating the carbon dioxide generated in air-independent submarine propulsion. The model is based on an approximate fitting of the homogeneous isentropic solution upstream of a valve (or any other area restriction), for given fluid conditions at the entrance. The relative maximum choking back-pressure is computed as a function of area restriction ratio. Although the procedure is generic for gas solutions, numeric values for the non-dimensional parameters in the analysis are developed only for choking in the case of carbon dioxide solutions up to the pure-water limit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel. © 2014 Copyright SPIE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last decades, the effects of the air pollution have been increasing, especially in the case of the human health diseases. In order to overcome this problem, scientists have been studying the components of the air. As a part of water-soluble organic compounds, amino acids are present in the atmospheric environment as components of diverse living organisms which can be responsible for spreading diseases through the air. Liquid chromatography is one technique capable of distinguish the different amino acids from each other. In this work, aiming at separating the amino acids found in the aerosols samples collected in Aveiro, the ability of four columns (Mixed-Mode WAX-1, Mixed-Mode HILIC-1, Luna HILIC and Luna C18) to separate four amino acids (aspartic acid, lysine, glycine and tryptophan) and the way the interaction of the stationary phases of the columns with the analytes is influenced by organic solvent concentration and presence/concentration of the buffer, are being assessed. In the Mixed-Mode WAX-1 column, the chromatograms of the distinct amino acids revealed the separation was not efficient, since the retention times were very similar. In the case of lysine, in the elution with 80% (V/V) MeOH, the peaks appeared during the volume void. In the Mixed-Mode HILIC-1 column, the variation of the organic solvent concentration did not affect the elution of the four studied amino acids. Considering the Luna HILIC column, the retention times of the amino acids were too close to each other to ensure a separation among each other. Lastly, the Luna C18 column revealed to be useful to separate amino acids in a gradient mode, being the variation of the mobile phase composition in the organic solvent concentration (ACN). Luna C18 was the column used to separate the amino acids in the real samples and the mobile phase had acidified water and ACN. The gradient consisted in the following program: 0 – 2 min: 5% (V/V) ACN, 2 – 8 min: 5 – 2 % (V/V) ACN, 8 – 16 min: 2% (V/V) ACN, 16 – 20 min: 2 – 20 % (V/V) ACN, 20 – 35 min: 20 – 35 % (V/V) ACN. The aerosols samples were collected by using three passive samplers placed in two different locations in Aveiro and each sampler had two filters - one faced up and the other faced down. After the sampling, the water-soluble organic compounds was extracted by dissolution in ultra-pure water, sonication bath and filtration. The resulting filtered solutions were diluted in acidified water for the chromatographic separation. The results from liquid chromatography revealed the presence of the amino acids, although it was not possible to identify each one of them individually. The chromatograms and the fluorescence spectra showed the existence of some patterns: the samples that correspond to the up filters had more intense peaks and signals, revealing that the up filters collected more organic matter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel magnetic carbon xerogels consisting of interconnected carbon microspheres with iron and/or cobalt microparticles embedded in their structure were developed by a simple route. As inferred from the characterization data, materials with distinctive properties may be directly obtained upon inclusion of iron and/or cobalt precursors during the sol-gel polymerization of resorcinol and formaldehyde, followed by thermal annealing. The unique properties of these magnetic carbon xerogels were explored in the catalytic wet peroxide oxidation (CWPO) of an antimicrobial agent typically found throughout the urban water cycle – sulfamethoxazole (SMX). A clear synergistic effect arises from the inclusion of cobalt and iron in carbon xerogels (CX/CoFe),the resulting magnetic material revealing a better performance in the CWPO of SMX at the ppb level(500 microg L−1) when compared to that of monometallic carbon xerogels containing only iron or cobalt.This effect was ascribed to the increased accessibility of highly active iron species promoted by the simultaneous incorporation of cobalt.The performance of the CWPO process in the presence of CX/CoFe was also evaluated in environmentally relevant water matrices, namely in drinking water and secondary treated wastewater, considered in addition to ultrapure water. It was found that the performance decreases when applied to more complex water and wastewater samples. Nevertheless, the ability of the CWPO technology for the elimination of SMX in secondary treated wastewater was unequivocally shown, with 96.8% of its initial content being removed after 6 h of reaction in the presence of CX/CoFe, at atmospheric pressure, room temperature(T = 25◦C), pH = 3, [H2O2]0= 500 mg L−1and catalyst load = 80 mg L−1. A similar performance (97.8% SMX removal) is obtained in 30 min when the reaction temperature is slightly increased up to 60◦C in an ultra-pure water matrix. Synthetic water containing humic acid, bicarbonate, sulphate or chloride, was also tested. The results suggest the scavenging effect of the different anions considered, as well as the negative impact of dissolved organic matter typically found in secondary treated wastewater, as simulated by the presence of humic acid.An in-situ magnetic separation procedure was applied for catalyst recovery and re-use during reusability cycles performed to mimic real-scale applications. CWPO runs performed with increased SMX concentration (10 mg L−1), under a water treatment process intensification approach, allowed to evalu-ate the mineralization levels obtained, the antimicrobial activity of the treated water, and to propose adegradation mechanism for the CWPO of SMX.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several morphologies and also synthesis of Nano-metal silicates with different morphologies as absorbent of metal toxic ions. At first, we synthesize nano zink silicate with three morphologies considering context and the purpose of this survey. 1) Nano synthesis of zink silicate hollow cavity by hydrothermal method in mixed solvent system of ethanol/glycol polyethylene. 2) Zink nano wires silicate in a water-based system by controlling the amount of sodium silicate. 3) Synthesis of nano zink silicate membrane. After synthesizing, we measured the cadmium ion absorbance by synthesized nano zink silicates. Controlling PH, is the applied absorption method. Next step, we synthesized nano zink-magnesium silicate composite in two various morphologies of nanowires and membrane by different precent of zink and magnesium, in order to optimize synthesized nano metal silicate. We used zink nitrate and magnesium nitrate and also measured cadmium absorption by synthesized nano metal silicates in the same way of PH control absorption. In the 3rd step, in order to determine the impact of the type of metal in nano metal silicate, we synthesized nano magnesium silicate and compared its absorption with nano zink silicate. Furthermore, we calculated the optimal concentration in one of synthesizes. Optimal concentration is the process which has the maximum absorption. While applying two methods of absorption in the test, finally we compared the effect of absorption method on the absorption level. Below you find further steps of synthesis: 1) Using IR, RAMAN, XRD spectroscopy to check the accuracy of synthesis. 2) Checking the dispersion of nano particles in ethanol solution by light microscope. 3) Measuring and observing particles with scanning electron microscope (SEM). 4) Using atomic absorption device for measuring the cadmium concentration in water-based solutions. The nano metal silicates were synthesized successfully. All of synthesized nano absorbents have the cadmium ion absorbency. The cadmium absorption via nano absorbents depend on various factors such as kind of metal in nano silicate and percent of metal in nano metal silicate composite. Meanwhile the absorption and PH control of medium containing the absorbent and solution would affect the cadmium absorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2concentration leads to better performance, i.e. stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of spray drying is applied in a number of contexts. One such application is the production of a synthetic rock used for storage of nuclear waste. To establish a framework for a model of the spray drying process for this application, we here develop a model describing evaporation from droplets of pure water, such that the model may be extended to account for the presence of colloid within the droplet. We develop a spherically-symmetric model and formulate continuum equations describing mass, momentum, and energy balance in both the liquid and gas phases from first principles. We establish appropriate boundary conditions at the surface of the droplet, including a generalised Clapeyron equation that accurately describes the temperature at the surface of the droplet. To account for experiment design, we introduce a simplified platinum ball and wire model into the system using a thin wire problem. The resulting system of equations is transformed in order to simplify a finite volume solution scheme. The results from numerical simulation are compared with data collected for validation, and the sensitivity of the model to variations in key parameters, and to the use of Clausius–Clapeyron and generalised Clapeyron equations, is investigated. Good agreement is found between the model and experimental data, despite the simplicity of the platinum phase model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A filter cloth with 182 holes per 10−4 m2 has been used to generate air bubbles both in pure water and in aqueous solutions of electrolytes and non-electrolytes at various air flow rates. Potassium bromide and ammonium perchlorate were the electrolytes used, while the non-electrolytes were isopropanol, urea and glycerol. Bubble diameters and their size distribution were measured from photographs. The role of solutes in affecting bubble sizes and their distribution compared to that of pure water is discussed in the light of a hypothesis. This hypothesis assumes that if the final bubble diameter is less than the inter-orifice distance, then bubbles do not coalesce; on the other hand, if it is greater, then coalescence occurs when tf greater-or-equal, slantedti+ts, but does not occur when t

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pressure-swirl nozzles (simplex nozzles) are used in various field applications such as aero-engines, power generation, spray painting and agricultural irrigation. For this particular nozzle, research in the past decade has dealt with the development of numerical models for predicting droplet distribution profiles. Although these results have been valuable, the experimental results have been contradictory, therefore fundamental understanding of the influence of properties in nozzle is important. This paper experimentally investigates the effect of surfactants on breakup and coalescence. Since most of the fuels and biofuels have low surface tension compared to water, a comparative analysis between a surfactant solution and a liquid fuel is imperative. For this experimental study, a simplex nozzle characterized as flow number 0.4 will be utilized. The injection pressures will range from 0.3 - 4Mpa while altering the surface tension from 72 to 28mN/m. By applying Phase Doppler Particle Anemometry (PDPA) which is a non-intrusive laser diagnostic technique, the differences in spray characteristics due to spray surface tension can be highlighted. The average droplet diameter decreases for a low surface tension fluid in the axial direction in comparison to pure water. The average velocity of droplets is surprisingly lower in the same spray zone. Measurements made in the radial direction show no significant changes, but at the locations close to the nozzle, water droplets have larger diameter and velocity. The results indicate the breakup and coalescence regimes have been altered when surface tension is lowered. A decrease in surface tension alters the breakup length while increasing the spray angle. Moreover, higher injection pressure shortens the breakup length and decrease in overall diameter of the droplets. By performing this experimental study the fundamentals of spray dynamics, such as spray formation, liquid breakup length, and droplet breakup regimes can be observed as a function of surface tension and how a surrogate fuel compares with a real fuel for experimental purposes. This knowledge potentially will lead to designing a better atomizer or new biofuels.