982 resultados para propagation properties


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that under reasonable assumptions, conservation of angular momentum provides a strong constraint on gravity wave drag feedbacks to radiative perturbations in the middle atmosphere. In the time mean, radiatively induced temperature perturbations above a given altitude z cannot induce changes in zonal mean wind and temperature below z through feedbacks in gravity wave drag alone (assuming an unchanged gravity wave source spectrum). Thus, despite the many uncertainties in the parameterization of gravity wave drag, the role of gravity wave drag in middle-atmosphere climate perturbations may be much more limited than its role in climate itself. This constraint limits the possibilities for downward influence from the mesosphere. In order for a gravity wave drag parameterization to respect the momentum constraint and avoid spurious downward influence, any nonzero parameterized momentum flux at a model lid must be deposited within the model domain, and there must be no zonal mean sponge layer. Examples are provided of how violation of these conditions leads to spurious downward influence. For planetary waves, the momentum constraint does not prohibit downward influence, but it limits the mechanisms by which it can occur: in the time mean, downward influence from a radiative perturbation can only arise through changes in reflection and meridional propagation properties of planetary waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the flux line dynamics in High-Temperature Superconductor (HTSC) thin films in the presence of columnar defects was studied using electronic transport measurements. The columnar defects which are correlated pinning centers for vortices were generated by irradiation with swift heavy ions at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt. In the first part, the vortex dynamics is discussed within the framework of the Bose-glass model. This approach describes the continuous transition from a vortex liquid to a Bose-glass phase which is characterized by the localization of the flux lines at the columnar defects. The critical behavior of the characteristic length and time scales for temperatures in the vicinity of this phase transition were probed by scaling properties of experimentally obtained current-voltage characteristics. In contrast to the predicted universal properties of the critical behavior the scaling analysis shows a strong dependence of the dynamic critical exponent on the experimentally accessible electric field range. In addition, the predicted divergence of the activation energy in the limit of low current densities was experimentally not confirmed.The dynamic behavior of flux lines in spatially resolved irradiation geometries is reported in the second part. Weak pinning channels with widths between 10 µm and 100 µm were generated in a strong pinning environment with the use of metal masks and the GSI microprobe, respectively. Measurements of the anisotropic transport properties of these structures show a striking resemblance to the results in YBCO single crystals with unidirected twin boundaries which were interpreted as a guided vortex motion effect. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution in the spatially resolved irradiation geometry. The results are interpreted within a model that describes the hydrodynamic interaction between a Bose-glass phase and a vortex liquid. The interface between weakly pinned flux lines in the unirradiated channels and strongly pinned vortices leads to a nonuniform vortex velocity profile and therefore a variation of the local electric field. The length scale of these interactions was estimated for the first time in measuring the local variation of the electric field profile in a Bose-glass contact.Finally, a method for the determination of the true temperature in HTSC thin films at high dissipation levels is described. In this regime of electronic transport the occurrence of a flux flow instability is accompanied by heating effects in the vortex system. The heat propagation properties of the film/substrate system are deduced from the time dependent voltage response to a short high current density pulse of rectangular shape. The influence of heavy ion irradiation on the heat resistance at the film/substrate interface is studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los métodos de detección rápida de microorganismos se están convirtiendo en una herramienta esencial para el control de calidad en el área de la biotecnología, como es el caso de las industrias de alimentos y productos farmacéuticos y bioquímicos. En este escenario, el objetivo de esta tesis doctoral es desarrollar una técnica de inspección rápida de microoganismos basada en ultrasonidos. La hipótesis propuesta es que la combinación de un dispositivo ultrasónico de medida y un medio líquido diseñado específicamente para producir y atrapar burbujas, pueden constituir la base de un método sensible y rápido de detección de contaminaciones microbianas. La técnica presentada es efectiva para bacterias catalasa-positivas y se basa en la hidrólisis del peróxido de hidrógeno inducida por la catalasa. El resultado de esta reacción es un medio con una creciente concentración de burbujas. Tal medio ha sido estudiado y modelado desde el punto de vista de la propagación ultrasónica. Las propiedades deducidas a partir del análisis cinemático de la enzima se han utilizado para evaluar el método como técnica de inspección microbiana. En esta tesis, se han investigado aspectos teóricos y experimentales de la hidrólisis del peróxido de hidrógeno. Ello ha permitido describir cuantitativamente y comprender el fenómeno de la detección de microorganismos catalasa-positivos mediante la medida de parámetros ultrasónicos. Más concretamente, los experimentos realizados muestran cómo el oxígeno que aparece en forma de burbujas queda atrapado mediante el uso de un gel sobre base de agar. Este gel fue diseñado y preparado especialmente para esta aplicación. A lo largo del proceso de hidrólisis del peróxido de hidrógeno, se midió la atenuación de la onda y el “backscattering” producidos por las burbujas, utilizando una técnica de pulso-eco. Ha sido posible detectar una actividad de la catalasa de hasta 0.001 unidades/ml. Por otra parte, este estudio muestra que por medio del método propuesto, se puede lograr una detección microbiana para concentraciones de 105 células/ml en un periodo de tiempo corto, del orden de unos pocos minutos. Estos resultados suponen una mejora significativa de tres órdenes de magnitud en comparación con otros métodos de detección por ultrasonidos. Además, la sensibilidad es competitiva con modernos y rápidos métodos microbiológicos como la detección de ATP por bioluminiscencia. Pero sobre todo, este trabajo muestra una metodología para el desarrollo de nuevas técnicas de detección rápida de bacterias basadas en ultrasonidos. ABSTRACT In an industrial scenario where rapid microbiological methods are becoming essential tools for quality control in the biotechnological area such as food, pharmaceutical and biochemical; the objective of the work presented in this doctoral thesis is to develop a rapid microorganism inspection technique based on ultrasounds. It is proposed that the combination of an ultrasonic measuring device with a specially designed liquid medium, able to produce and trap bubbles could constitute the basis of a sensitive and rapid detection method for microbial contaminations. The proposed technique is effective on catalase positive microorganisms. Well-known catalase induced hydrogen peroxide hydrolysis is the fundamental of the developed method. The physical consequence of the catalase induced hydrogen peroxide hydrolysis is an increasingly bubbly liquid medium. Such medium has been studied and modeled from the point of view of ultrasonic propagation. Properties deduced from enzyme kinematics analysis have been extrapolated to investigate the method as a microbial inspection technique. In this thesis, theoretical and experimental aspects of the hydrogen peroxide hydrolysis were analyzed in order to quantitatively describe and understand the catalase positive microorganism detection by means of ultrasonic measurements. More concretely, experiments performed show how the produced oxygen in form of bubbles is trapped using the new gel medium based on agar, which was specially designed for this application. Ultrasonic attenuation and backscattering is measured in this medium using a pulse-echo technique along the hydrogen peroxide hydrolysis process. Catalase enzymatic activity was detected down to 0.001 units/ml. Moreover, this study shows that by means of the proposed method, microbial detection can be achieved down to 105 cells/ml in a short time period of the order of few minutes. These results suppose a significant improvement of three orders of magnitude compared to other ultrasonic detection methods for microorganisms. In addition, the sensitivity reached is competitive with modern rapid microbiological methods such as ATP detection by bioluminescence. But above all, this work points out a way to proceed for developing new rapid microbial detection techniques based on ultrasound.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an optimization procedure to improve the propagation properties of the depressed cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm can be optimized beyond 3 micro meter for hexagonal WG structures with seven rings of tracks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental results are presented to show how a planar circuit, printed on a laterally shielded dielectric waveguide, can induce and control the radiation from a leaky-mode. By studying the leaky-mode complex propagation constant, a desired radiation pattern can be synthesized, controlling the main radiation characteristics (pointing direction, beamwidth, sidelobes level) for a given frequency, This technique leads to very flexible and original leaky-wave antenna designs. The experiments show to be in very good agreement with the leaky-mode theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, in this paper, the tensile deformation properties of Cu nanowires (NWs) with different pre-existing defects, including single surface defects, surface bi-defects and single internal defects, are systematically studied. In-depth deformation mechanisms of NWs with pre-existing defects are also explored. It is found that Young's modulus is insensitive to different pre-existing defects, but yield strength shows an obvious decrease. Defects are observed influencing greatly on NWs' tensile deformation mechanisms, and playing a role of dislocation sources. Besides of the traditional deformation process dominated by the nucleation and propagation of partial dislocations, the generations of twins, grain boundaries, fivefold deformation twins, hexagonal close-packed (HCP) structure and phase transformation from face-centred cubic (FCC) structure to HCP structure have been triggered by pre-existing defects. It is found that surface defect intends to induce larger influence to yield strength than internal defect. Most importantly, the defect that lies on slip planes exerts larger influence than other defects. As expected, it is also found that the more or longer of the defect, the bigger influence will be induced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in modern photonics and nano-optics is the diffraction limit of light which does not allow field localisation into regions with dimensions smaller than half the wavelength. Localisation of light into nanoscale regions (beyond its diffraction limit) has applications ranging from the design of optical sensors and measurement techniques with resolutions as high as a few nanometres, to the effective delivery of optical energy into targeted nanoscale regions such as quantum dots, nano-electronic and nano-optical devices. This field has become a major research direction over the last decade. The use of strongly localised surface plasmons in metallic nanostructures is one of the most promising approaches to overcome this problem. Therefore, the aim of this thesis is to investigate the linear and non-linear propagation of surface plasmons in metallic nanostructures. This thesis will focus on two main areas of plasmonic research –– plasmon nanofocusing and plasmon nanoguiding. Plasmon nanofocusing – The main aim of plasmon nanofocusing research is to focus plasmon energy into nanoscale regions using metallic nanostructures and at the same time achieve strong local field enhancement. Various structures for nanofocusing purposes have been proposed and analysed such as sharp metal wedges, tapered metal films on dielectric substrates, tapered metal rods, and dielectric V-grooves in metals. However, a number of important practical issues related to nanofocusing in these structures still remain unclear. Therefore, one of the main aims of this thesis is to address two of the most important of issues which are the coupling efficiency and heating effects of surface plasmons in metallic nanostructures. The method of analysis developed throughout this thesis is a general treatment that can be applied to a diversity of nanofocusing structures, with results shown here for the specific case of sharp metal wedges. Based on the geometrical optics approximation, it is demonstrated that the coupling efficiency from plasmons generated with a metal grating into the nanofocused symmetric or quasi-symmetric modes may vary between ~50% to ~100% depending on the structural parameters. Optimal conditions for nanofocusing with the view to minimise coupling and dissipative losses are also determined and discussed. It is shown that the temperature near the tip of a metal wedge heated by nanosecond plasmonic pulses can increase by several hundred degrees Celsius. This temperature increase is expected to lead to nonlinear effects, self-influence of the focused plasmon, and ultimately self-destruction of the metal tip. This thesis also investigates a different type of nanofocusing structure which consists of a tapered high-index dielectric layer resting on a metal surface. It is shown that the nanofocusing mechanism that occurs in this structure is somewhat different from other structures that have been considered thus far. For example, the surface plasmon experiences significant backreflection and mode transformation at a cut-off thickness. In addition, the reflected plasmon shows negative refraction properties that have not been observed in other nanofocusing structures considered to date. Plasmon nanoguiding – Guiding surface plasmons using metallic nanostructures is important for the development of highly integrated optical components and circuits which are expected to have a superior performance compared to their electronicbased counterparts. A number of different plasmonic waveguides have been considered over the last decade including the recently considered gap and trench plasmon waveguides. The gap and trench plasmon waveguides have proven to be difficult to fabricate. Therefore, this thesis will propose and analyse four different modified gap and trench plasmon waveguides that are expected to be easier to fabricate, and at the same time acquire improved propagation characteristics of the guided mode. In particular, it is demonstrated that the guided modes are significantly screened by the extended metal at the bottom of the structure. This is important for the design of highly integrated optics as it provides the opportunity to place two waveguides close together without significant cross-talk. This thesis also investigates the use of plasmonic nanowires to construct a Fabry-Pérot resonator/interferometer. It is shown that the resonance effect can be achieved with the appropriate resonator length and gap width. Typical quality factors of the Fabry- Pérot cavity are determined and explained in terms of radiative and dissipative losses. The possibility of using a nanowire resonator for the design of plasmonic filters with close to ~100% transmission is also demonstrated. It is expected that the results obtained in this thesis will play a vital role in the development of high resolution near field microscopy and spectroscopy, new measurement techniques and devices for single molecule detection, highly integrated optical devices, and nanobiotechnology devices for diagnostics of living cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.