958 resultados para power-law tori,analytic models,AGN,gas dynamics,stability
Resumo:
A one-dimensional shock-reflection test problem in the case of slab, cylindrical, or spherical symmetry is discussed. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankie-Hugoniot shock relations.
Resumo:
BACKGROUND: Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. OBJECTIVES: The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. METHODS: Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. RESULTS: All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, P<.001). CONCLUSIONS: This is the first study to investigate power distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that patterns observed in this study could be found in other DHSNs. Future research should analyze network growth over time and examine the characteristics and survival rates of superusers.
Resumo:
We introduce in this paper a new class of discrete generalized nonlinear models to extend the binomial, Poisson and negative binomial models to cope with count data. This class of models includes some important models such as log-nonlinear models, logit, probit and negative binomial nonlinear models, generalized Poisson and generalized negative binomial regression models, among other models, which enables the fitting of a wide range of models to count data. We derive an iterative process for fitting these models by maximum likelihood and discuss inference on the parameters. The usefulness of the new class of models is illustrated with an application to a real data set. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Critical limits of a stationary nonlinear three-dimensional Schrodinger equation with confining power-law potentials (similar to r(alpha)) are obtained using spherical symmetry. When the nonlinearity is given by an attractive two-body interaction (negative cubic term), it is shown how the maximum number of particles N-c in the trap increases as alpha decreases. With a negative cubic and positive quintic terms we study a first order phase transition, that occurs if the strength g(3) of the quintic term is less than a critical value g(3c). At the phase transition, the behavior of g(3c) with respect to alpha is given by g(3c)similar to 0.0036+0.0251/alpha+0.0088/alpha(2).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied the statistical distribution of student's performance, which is measured through their marks, in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) with respect to (i) period of study - day versus night period (ii) teaching conditions - private versus public school (iii) economical conditions - high versus low family income. We observed long ubiquitous power law tails in physical and biological sciences in all cases. The mean value increases with better study conditions followed by better teaching and economical conditions. In humanities, the distribution is close to normal distribution with very small tail. This indicates that these power law tails in science subjects axe due to the nature of the subjects themselves. Further and better study, teaching and economical conditions axe more important for physical and biological sciences in comparison to humanities at this level of study. We explain these statistical distributions through Gradually Truncated Power law distributions. We discuss the possible reason for this peculiar behavior.
Resumo:
Power-law distributions have been observed in various economical and physical systems. Levy flights have infinite variance which discourage a physical approach. We introduce a class of stochastic processes, the gradually truncated Levy flight in which large steps of a Levy flight are gradually eliminated. It has finite variance and the system can be analyzed in a closed form. We applied the present method to explain the distribution of a particular economical index. The present method can be applied to describe time series in a variety of fields, i.e. turbulent flow, anomalous diffusion, polymers, etc. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
In the present work, we propose a model for the statistical distribution of people versus number of steps acquired by them in a learning process, based on competition, learning and natural selection. We consider that learning ability is normally distributed. We found that the number of people versus step acquired by them in a learning process is given through a power law. As competition, learning and selection is also at the core of all economical and social systems, we consider that power-law scaling is a quantitative description of this process in social systems. This gives an alternative thinking in holistic properties of complex systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We studied the statistical distribution of candidate's performance which is measured through their marks in university entrance examination (Vestibular) of UNESP (Universidade Estadual Paulista) for years 1998, 1999, and 2000. All students are divided in three groups: Physical, Biological and Humanities. We paid special attention to the examination of Portuguese language which is common for all and examinations for the particular area. We observed long ubiquitous power law tails in Physical and Biological sciences. This indicate the presence of strong positive feedback in sciences. We are able to explain completely these statistical distributions through Gradually Truncated Power law distributions which we developed recently to explain statistical behavior of financial market. The statistical distribution in case of Portuguese language and humanities is close to normal distribution. We discuss the possible reason for this peculiar behavior.
Resumo:
A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.
Resumo:
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits.
Resumo:
Quando la probabilità di misurare un particolare valore di una certa quantità varia inversamente come potenza di tale valore, il quantitativo è detto come seguente una power-law, conosciuta anche come legge di Zipf o distribuzione di Pareto. Obiettivo di questa tesi sarà principalmente quello di verificare se il campione esteso di imprese segue la power-law (e se sì, in che limiti). A tale fine si configureranno i dati in un formato di rete monomodale, della quale si studieranno alcune macro-proprietà di struttura a livllo complessivo e con riferimento alle componenti (i singoli subnet distinti) di maggior dimensione. Successivamente si compiranno alcuni approfondimenti sulla struttura fine di alcuni subnet, essenzialmente rivolti ad evidenziare la potenza di unapproccio network-based, anche al fine di rivelare rilevanti proprietà nascoste del sistema economico soggiacente, sempre, ovviamente, nei limiti della modellizzazione adottata. In sintesi, ciò che questo lavoro intende ottenere è lo sviluppo di un approccio alternativo al trattamento dei big data a componente relazionale intrinseca (in questo caso le partecipazioni di capitale), verso la loro conversione in "big knowledge": da un insieme di dati cognitivamente inaccessibili, attraverso la strutturazione dell'informazione in modalità di rete, giungere ad una conoscenza sufficientemente chiara e giustificata.