998 resultados para power MOSFET
Resumo:
An 800V rated lateral IGBT for high frequency, low-cost off-line applications has been developed. The LIGBT features a new method of adjusting the bipolar gain, based on a floating N+ stripe in front of the P+ anode/drain region. The floating N+ layer enhances the carrier recombination at the anode/drain side of the drift region resulting in a very significant decrease in the turn-off speed and substantially lower overall losses. Switching speeds as low as 140ns at 25oC and 300ns at 125oC have been achieved with corresponding equivalent Rdson at 125oC below 90mω.cm2. A fully operational AC-DC converter using a controller with an integrated LIGBT+depletion mode MOSFET chip has been designed and qualified in plastic SOP8 packages and used in 5W, 65kHz SMPS applications. The device is fabricated in 0.6μm bulk silicon CMOS technology without any additional masking steps. © 2013 IEEE.
Resumo:
An asymmetric MOSFET-C band-pass filter(BPF)with on chip charge pump auto-tuning is presented.It is implemented in UMC (United Manufacturing Corporation)0.18μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump OUtputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point(HP3) is 16.621 dBm,wim 50 Ω as the source impedance. The input referred noise iS about 47.455μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm~2 and it can be utilized in GPS (global positioning system)and Bluetooth systems.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A low-voltage, low-power four-quadrant analog multiplier with optimized current-efficiency is presented. Its core corresponds to a pseudodifferential cascode, gain-boosting triode-transconductor. According to a low-voltage 1.2μm CMOS n-well process, operand differential-amplitudes are 1.0Vpp and 0.32Vpp for a 1.3V-supply. Common-mode voltages are properly chosen to maximize current-efficiency to 58%. Total quiescent dissipation is 260μW. A range of PSPICE simulation supports theoretical analysis. Excellent linearity is observed on dc characteristic. Assuming a ±0.5% mismatch on (W/L) and VTH THD at full-scale is 0.93% and 1.42%, for output frequencies of 1MHz and 10MHz, respectively.
Resumo:
Power supply unpredictable uctuations jeopardize the functioning of several types of current electronic systems. This work presents a power supply sensor based on a voltage divider followed by buffer-comparator cells employing just MOSFET transistors and provides a digital output. The divider outputs are designed to change more slowly than the thresholds of the comparators, in this way the sensor is able to detect voltage droops. The sensor is implemented in a 65nm technology node occupying an area of 2700?m2 and displaying a power consumption of 50?W. It is designed to work with no voltage reference and with no clock and aiming to obtain a fast response.