996 resultados para polylactic acid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymeric nanoparticles have received great attention as potential controlled drug delivery systems. Biodegradable polymers has been extensively used in the development of these drug carriers, and the polyesters such as polylactic acid, polyglycolic acid and their copolymers as poly-lactide-co- glycolide are the most used, considering its biocompatibility and biodegradability. Thermal analysis techniques have been used for pharmaceutical substances for more than 30 years and are routine methods for screening drug-excipient interactions. The aim of this work is to use thermal analysis to characterize PLGA nanoparticles containing a hydrophobic drug, praziquantel. The results show that the drug is in an amorphous state or in disordered crystalline phase of molecular dispersion in the PLGA polymeric matrix and that the microencapsulation process did not interfere with the chemical structure of the polymer, mantaining the structural drug integrity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to compare the bone repair along a mandibular body osteotomy stabilized with 2.0 mm absorbable and metallic systems. 12 male, adult mongrel dogs were divided into two groups (metallic and absorbable) and subjected to unilateral osteotomy between the mandibular third and fourth premolars, which was stabilized by applying two 4-hole plates. At 2 and 18 weeks, three dogs from each group were killed and the osteotomy sites were removed and divided equally into three parts: the upper part was labelled the tension third (TT), the lower part the compression third (CT), and the part between the TT and CT the intermediary third (IT). Regardless of the treatment system, union between the fragments was observed at 18 weeks and the CT showed more advanced stages of bone repair than the TT. Histometric analysis did not reveal any significant differences among the 3 parts or systems in the distance between bone fragments at 2 weeks. Although at 18 weeks the proportions of newly formed bone did not differ among TT, IT and CT, significantly enhanced bone formation was observed in all sections for the metallic group. The patterns of repair were distinct between treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodegradable polymer/clay nanocomposites were prepared withpristine and organically modified montmorillonite in polylactic acid (PLA) and polycaprolactone (PCL) polymer matrices. Nanocomposites were fabricated using extrusion and SSSP to compare the effects of melt-state and solid-state processing on the morphology of the final nanocomposite. Characterization of various material properties was performed on prepared biodegradable polymer/clay nanocomposites to evaluate property enhancements from different clays and/or processing methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Devido à preocupação com o meio ambiente e o volume crescente de resíduos plástico em aterros sanitários, os polímeros biodegradáveis estão sendo estudados extensivamente. Um deles é o PLA. Apesar de possuir propriedades comparáveis a polímeros commodities e polímeros de engenharia, ainda é necessário melhorar certas características do PLA, como resistência ao impacto. Para isso, a nanocelulose (NC) pode ser usada sem alterações significativas na biodegradação polimérica. Este estudo teve como objetivo obter a nanocelulose, caracteriza-la e incorpora-la ao poli(ácido láctico) (PLA), assim como, estudar as propriedades térmicas, morfológicas e mecânicas do compósito obtido. A NC foi obtida por hidrólise ácida utilizando ácido fosfórico e posteriormente foi silanizada com três silanos distintos. As nanopartículas foram caracterizadas por Birrefringência, Microscopia Eletrônica de Transmissão (MET), Termogravimetria (TG), Potencial Zeta, Espectroscopia Vibracional de Absorção no Infravermelho com Transformada de Fourier (FTIR) e Difração de Raio X (DRX). Com as imagens obtidas pelo MET foi possível medir o tamanho das partículas de NC. E então obter a razão de aspecto de 82 e o limite de percolação de 1,1% em massa, confirmando a morfologia de nanofibra. De acordo as analises TG\'s, a presença de NC silanizada aumentou o início da degradação térmica. Os compósitos, contendo 3% em massa de NC, foram obtidos por fusão em câmara de mistura e moldados por injeção. Os compósitos foram caracterizados por FTIR, Cromatografia de Permeação em Gel (GPC), TG, Calorimetria Exploratória Diferencial (DSC), Microscopia Eletrônica de Varredura (MEV-FEG), Impacto e Tração. As análises dos compósitos mostraram que a NC atuou como agente de nucleação, facilitando a cristalização do PLA, além de a NC ter atuado como reforço na matriz polimérica melhorando as propriedades mecânicas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extensive bone defects in maxillofacial region can be corrected with autogenous grafts; otherwise, the disadvantages of the therapeutics modality take the research for new bone substitutes. The aim of the study was to evaluate and compare the osteoconductive properties of 3 commercial available biomaterials. A total of 30 calvarial defects (5-mm diameter) were randomly divided into 5 treatment groups, with a total of 6 defects per treatment group (n = 6). The treatment groups were as follows: 500 to 1000 Km beta-tricalcium phosphate (beta-TCP), polylactic and polyglycolic acid (PL/PG) gel, calcium phosphate cement, untreated control, and autograft control. The evaluations were based on histomorphometric analysis at 60 postoperative days. The results have shown that beta-TCP and autograft control supported bone formation at 60 postoperative days. beta-Tricalcium phosphate showed the highest amount of mineralized area per total area and statistically significant compared with PL/PG, calcium phosphate cement, and untreated control groups. The PL/PG gel does not have osteoconductive properties and performed similar to empty control. Calcium phosphate cement showed higher number of multinucleated giant cells around the sites of the biomaterial and showed newly formed bone only at the edges of the biomaterial, without bone formation within the biomaterial. The findings presented herein indicate that bone formation reached a maximum level when rat calvarial defects were filled with beta-TCP at 60 postoperative days. Further studies should be conducted with beta-TCP to understand the potential of this biomaterial in bone regeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.