970 resultados para pollution effects
Resumo:
Urban forest health was surveyed on Roznik in Ljubljana (46.05141 N, 14.47797 E) in 2013 by two methods: ICP Forests and UFMO. ICP Forests is most commonly used monitoring programme in Europe - the International Co-operative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests, which is based on systematic grid. UFMO method - Urban Forests Management Oriented method was developed in the frame of EMoNFUr Project - Establishing a monitoring network to assess lowland forest and urban plantations in Lombardy and urban forest in Slovenia (LIFE10 ENV/IT/000399). UFMO is based on non-linear transects (GPS tracks). ICP forests monitoring plots were established in July 2013 in the urban forest Roznik in Ljubljana .The 32 plots are located on sampling grid 500 × 500 m. The grid was down-scaled from the National Forest Monitoring survey, which bases on national sample grid 4 × 4 km. With the ICP forests method the following parameters for each tree within the 15 plots were gathered according to the ICP forests manual for Visual assessment of crown condition and damaging agents: tree species, percentage of defoliation, affected part of the tree, specification of affected part, location in crown, symptom, symptom specification, causal agents / factors, age of damage, damage extent, and damage extent on the trunk. With the UFMO method, the following parameters for each tree that needed sylviculture measure (felling, pruning, sanitary felling, thinning, etc.) were recorded: tree species, breast diameter, causal agent / damaging factor, GPS waypoint and GPS track. For overall picture in the urban forest health problems, also other biotic and abiotic damaging factors that did not require management action were recorded.
Resumo:
Background: In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives: We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods: To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16x16 km2. In a second step, we used the concentration-response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005-2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results: Our model suggested that there would be a mean overall reduction in fine particle levels of 1mg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions: Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline infine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.
Resumo:
Mode of access: Internet.
Resumo:
The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.
Resumo:
Measurements of tree heights and crown sizes are essential in long-term monitoring of spatially distributed forests to assess the health of forests over time. In Switzerland, in 1994 and 1997, more than 4'500 trees have been recorded in a 8x8 km plot within the Sanasilva Inventory, which comprises the Swiss Level I sites of the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests' (ICP Forests). Tree heights and crown sizes were measured for the dominant and co-dominant trees (n = 1,723), resulting in a data set from 171 plots in Switzerland, spreading over a broad range of climatic gradient and forest characteristics (species recorded = 20). Average tree height was 22.1 m, average DBH 34.6 cm and crown diameter 6.5 m. The data set presented here is open to use and shall foster research in allometric equation modelling.
Resumo:
This is the first in a series of four articles which will explore different aspects of air pollution, its impact on health and challenges in defining the boundaries between impact and nonimpact on health. Hardly a new topic one might say. Indeed, it’s been an issue for centuries, millennia even! For example, Pliny the Elder (AD 23-79), a Roman officer and author of the ‘Natural History’ recommended that: “…quarry slaves from asbestos mines not be purchased because they die young”, and suggested: “…the use of a respirator, made of transparent bladder skin, to protect workers from asbestos dust.” Closer to modern times, a Danish Proverb states: "Fresh air impoverishes the doctor". While none of these statements are an air quality guideline in a modern sense, they do illustrate that, for a very long time, we have known that there is a link between air quality and health, and that some measures were taken to reduce the impact of the exposure to the pollutants. Obviously, we are much more sophisticated now!
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
Industrial effluents in the lower Patapsco area, which constitutes the navigable portion of the river and includes Baltimore Harbor, are many and include waste acid, distillery waters, tannery wastes and copper as (ferrous sulphate) from pigment and steel industries. (PDF contains 22 pages (2 on 1)
Resumo:
River Kubanni, a major tributary of River Galma, receives both organic and inorganic wastes through run-offs and seepage from residential and agricultural areas of Tundun-Wada, Zaria. Water and phytoplankton samples were collected once a month from three stations on a stretch of the river, for eight months (February, 1994-0ctober, 1994). The physico-chemical parameters and phytoplankton composition were determined and correlated to one another. The distribution and composition of phytoplankton species are affected by variations through fluctuations in environmental variables such as temperature, velocity, transparency, pH, dissolved Oxygen, total alkalinity, total hardness, electrical conductivity and total dissolved matter. Highest dissolved oxygen concentration in February coincided with the minimum water temperature due to the cool harmattan winds. Low alkalinity resulted in low phytoplankton productivity while a rise in total dissolved matter resulted in increase in electrical conductivity and high phytoplankton productivity. The presence of Oscillatoria sp and Euglena sp in station 2 and 3 are indicative of organic pollution in these stations. However, the river stretch is suitable for fish production with respect to water hardness and pH
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Does environmental regulation impair international competitiveness of pollution-intensive industries to the extent that they relocate to countries with less stringent regulation, turning those countries into "pollution havens"? We test this hypothesis using panel data on outward foreign direct investment (FDI) flows of various industries in the German manufacturing sector and account for several econometric issues that have been ignored in previous studies. Most importantly, we demonstrate that externalities associated with FDI agglomeration can bias estimates away from finding a pollution haven effect if omitted from the analysis. We include the stock of inward FDI as a proxy for agglomeration and employ a GMM estimator to control for endogenous time-varying determinants of FDI flows. Furthermore, we propose a difference estimator based on the least polluting industry to break the possible correlation between environmental regulatory stringency and unobservable attributes of FDI recipients in the cross-section. When accounting for these issues we find robust evidence of a pollution haven effect for the chemical industry. © 2008 Springer Science+Business Media B.V.