998 resultados para physics.plasm-ph


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.

In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.

We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.

We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.

In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.

Finally, we discuss prospects for related future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.

Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.

Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.

Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The works presented in this thesis explore a variety of extensions of the standard model of particle physics which are motivated by baryon number (B) and lepton number (L), or some combination thereof. In the standard model, both baryon number and lepton number are accidental global symmetries violated only by non-perturbative weak effects, though the combination B-L is exactly conserved. Although there is currently no evidence for considering these symmetries as fundamental, there are strong phenomenological bounds restricting the existence of new physics violating B or L. In particular, there are strict limits on the lifetime of the proton whose decay would violate baryon number by one unit and lepton number by an odd number of units.

The first paper included in this thesis explores some of the simplest possible extensions of the standard model in which baryon number is violated, but the proton does not decay as a result. The second paper extends this analysis to explore models in which baryon number is conserved, but lepton flavor violation is present. Special attention is given to the processes of μ to e conversion and μ → eγ which are bound by existing experimental limits and relevant to future experiments.

The final two papers explore extensions of the minimal supersymmetric standard model (MSSM) in which both baryon number and lepton number, or the combination B-L, are elevated to the status of being spontaneously broken local symmetries. These models have a rich phenomenology including new collider signatures, stable dark matter candidates, and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to protect against baryon and lepton number violating processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.

II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der pH-Wert stellt in der Chemie, Physik, Biologie, Pharmazie und Medizin eine wichtige Meßgröße dar, da eine Vielzahl von Reaktionen durch den pH-Wert bestimmt wird. In der Regel werden zur pH-Wert-Messung Glaselektroden eingesetzt. Hierbei konnte der pH-sensitive Bereich zwar bis auf einige Mikrometer reduziert werden, aber die Gesamtab-messungen betragen immer noch 15-20 cm. Mit der Einführung miniaturisierter Reaktionsgefäße ist daher der Bedarf an miniaturisierten Sensoren enorm gestiegen. Um in solchen Gefäßen Reaktionsparameter wie z. B. den pH-Wert zu kontrollieren, müssen die Gesamtabmessungen der Sensoren verringert werden. Dies lässt sich mit Hilfe der Mikrostrukturtechnik von Silizium realisieren. Hiermit lassen sich Strukturen und ganze Systeme bis in den Nanometerbereich herstellen. Basierend auf Silizium und Gold als Elektrodenmaterial wurden im Rahmen dieser Arbeit verschiedene Interdigitalstrukturen hergestellt. Um diese Strukturen zur pH-Wert-Messungen einsetzen zu können, müssen sie mit einer pH-sensitiven Schicht versehen werden. Hierbei wurde Polyanilin, ein intrinsisch leitendes Polymer, aufgrund seine pH-abhängigen elektrischen und optischen Verhaltens eingesetzt. Die Beschichtung dieser Sensoren mit Polyanilin erfolgte vorwiegend elektrochemisch mit Hilfe der Zyklovoltammetrie. Neben der Herstellung reiner Polyanilinfilme wurden auch Kopolymerisationen von Anilin und seinen entsprechenden Aminobenzoesäure- bzw. Aminobenzensulfonsäurederivaten durchgeführt. Ergebnisse dazu werden vorgestellt und diskutiert. Zur Charakterisierung der resultierenden Polyanilin- und Kopolymerfilme auf den Inter-digitalstrukturen wurden mit Hilfe der ATR-FT-IR-Spektroskopie Spektren aufgenommen, die gezeigt und diskutiert werden. Eine elektrochemische Charakterisierung der Polymere erfolgte mittels der Zyklovoltammetrie. Die mit Polyanilin bzw. seinen Kopolymeren beschichteten Sensoren wurden dann für Widerstandsmessungen an den Polymerfilmen in wässrigen Medien eingesetzt. Polyanilin zeigt lediglich eine pH-Sensitivität in einem pH-Bereich von pH 2 bis pH 4. Durch den Einsatz der Kopolymere konnte dieser pH-sensitive Bereich jedoch bis zu einem pH-Wert von 10 ausgeweitet werden. Zur weiteren Miniaturisierung der Sensoren wurde das Konzept der interdigitalen Elektroden-paare auf Cantilever übertragen. Die pH-sensitive Zone konnte dabei auf 500 µm2 bei einer Gesamtlänge des Sensors (Halter mit integriertem Cantilever) von 4 mm reduziert werden. Neben den elektrischen pH-abhängigen Eigenschaften können auch die optischen Eigen-schaften des Polyanilins zur pH-Detektion herangezogen werden. Diese wurden zunächst mit Hilfe der UV-VIS-Spektroskopie untersucht. Die erhaltenen Spektren werden gezeigt und kurz diskutiert. Mit Hilfe eines Raster-Sonden-Mikroskops (a-SNOM, Firma WITec) wurden Reflexionsmessungen an Polyanilinschichten durchgeführt. Zur weiteren Miniaturisierung wurden Siliziumdioxidhohlpyramiden (Basisfläche 400 µm2) mit Spitzenöffnungen in einem Bereich von 50-150 nm mit Polyanilin beschichtet. Auch hier sollten die optischen Eigenschaften des Polyanilins zur pH-Wert-Sensorik ausgenutzt werden. Es werden erste Messungen an diesen Strukturen in Transmission diskutiert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PhotogemA (R) is a hematoporphyrin derivative that has been used as a photosensitizer in experimental and clinical Photodynamic Therapy (PDT) in Brazil. Photosensitizers are degraded under illumination. This process, usually called photobleaching, can be monitored by decreasing in fluorescence intensities and includes the following photoprocesses: photodegradation, phototransformation, and photorelocalization. Photobleaching of hematoporphyrin-type sensitizers during illumination in aqueous solution is related not only to photodegradation but is also followed by the formation of photoproducts with a new fluorescence band at around 640-650 nm and with increased light absorption in the red spectral region at 640 nm. In this study, the influence of pH on the phototransformation process was investigated. PhotogemA (R) solutions, 40 mu g/ml, were irradiated at 514 nm with intensity of 100 mW/cm(2) for 20 min with different pH environments. The controls were performed with the samples in the absence of light. The PhotogemA (R) photodegradation is dependent on the pH. The behavior of photodegradation and photoproducts formation (monitored at 640 nm) is distinct and depends on the photosensitizer concentration. The processes of degradation and photoproducts formation were monitored with Photogemin the concentration of 40 mu g/mL since that demonstrated the best visualization of both processes. While below pH 5 the photodegradation occurred, there was no detectable presence of photoproducts. The increase of pH led to increase of photoproducts formation rate with photodegradation reaching the highest value at pH 10. The increase of photoproducts formation and instability of PhotogemA (R) from pH 6 to pH 10 are in agreement with the desired properties of an ideal photosensitizer since there are significant differences in pH between normal (7.0 < pH < 8.6) and tumor (5.8 < pH < 7.9) tissues. It is important to know the effect of pH in the process of phototransformation (degradation and photoproduct formation) of the molecule since low pH values promotes increase in the proportion of aggregates species in solution and high pH values promotes increase in the proportion of monomeric species. There must be an ideal pH interval which favors the phototransformation process that is correlated with the singlet oxygen formation responsible by the photodynamic effect. These differences in pH between normal and tumor cells can explain the presence of photosensitizers in target tumor cells, making PDT a selective therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2:2 at. %Er xerogel samples were obtained by sol-gel technique from colloidal suspensions with distinct pHs. The evaluation of critical regions inside the nanocrystallite is fundamental for the interpretation of the influence of pH on the emission data. In this way, the nanocrystal depletion layer thickness was obtained with the help of photoluminescence, Raman, X-ray diffraction, and field-emission gun scanning electron microscopy measurements. It was observed that acid suspensions (pH < 7) lead to high surface disorder in which a larger number of cross-linked bonds Sn-O-Sn among nanoparticles are present. For these samples, the nanoparticle depletion layer is larger as compared to samples obtained from other pH. Photoluminescence measurement in the near infrared region indicates that the emission intensity of the transition 4I13/2 → 4I15/2 is also influenced by the pH of the starting colloidal suspension, generating peaks more or less broadened, depending on location of Er3+ ions in the SnO2 lattice (high or low symmetry sites). © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Intensity-modulated radiotherapy (IMRT) credentialing for a EORTC study was performed using an anthropomorphic head phantom from the Radiological Physics Center (RPC; RPC(PH)). Institutions were retrospectively requested to irradiate their institutional phantom (INST(PH)) using the same treatment plan in the framework of a Virtual Phantom Project (VPP) for IMRT credentialing. MATERIALS AND METHODS CT data set of the institutional phantom and measured 2D dose matrices were requested from centers and sent to a dedicated secure EORTC uploader. Data from the RPC(PH) and INST(PH) were thereafter centrally analyzed and inter-compared by the QA team using commercially available software (RIT; ver.5.2; Colorado Springs, USA). RESULTS Eighteen institutions participated to the VPP. The measurements of 6 (33%) institutions could not be analyzed centrally. All other centers passed both the VPP and the RPC ±7%/4 mm credentialing criteria. At the 5%/5 mm gamma criteria (90% of pixels passing), 11(92%) as compared to 12 (100%) centers pass the credentialing process with RPC(PH) and INST(PH) (p = 0.29), respectively. The corresponding pass rate for the 3%/3 mm gamma criteria (90% of pixels passing) was 2 (17%) and 9 (75%; p = 0.01), respectively. CONCLUSIONS IMRT dosimetry gamma evaluations in a single plane for a H&N prospective trial using the INST(PH) measurements showed agreement at the gamma index criteria of ±5%/5 mm (90% of pixels passing) for a small number of VPP measurements. Using more stringent, criteria, the RPC(PH) and INST(PH) comparison showed disagreement. More data is warranted and urgently required within the framework of prospective studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06