984 resultados para phthalic acid derivative
Resumo:
Citalopram is a chiral antidepressant drug. Its eutomer, S-citalopram (escitalopram), has recently been introduced as an antidepressant. In an open pilot study, four outpatients and two inpatients with a major depressive episode (ICD-10), and who were nonresponders to a 4-week pretreatment with 40-60 mg/day citalopram, were comedicated for another 4-week period with carbamazepine (200-400 mg/day). Some of the patients suffered also from comorbidities: Phobic anxiety disorder with panic attacks (n=2), generalised anxiety disorder, alcohol abuse, dependent personality disorder, hypertension (n=1). After a 4-week augmentation therapy with carbamazepine, a significant (P<0.03) decrease of the plasma concentrations of S-citalopram and R-citalopram, by 27 and 31%, respectively, was observed. Apparently, the probable induction of CYP3A4 by carbamazepine results in a nonstereoselective increase in N-demethylation of citalopram. Moreover, there was a significant (P<0.03) decrease of the ratio S/R-citalopram propionic acid derivative, the formation of it being partly regulated by MAO-A and MAO-B. Already, within 1 week after addition of carbamazepine, there was a slight but significant (P<0.03) decrease of the MADRS depression scores, from 27.0+/-7.7 (mean+/-S.D.) to 23.3+/-6.6, and the final score on day 56 was 18.8+/-10.9. The treatment was generally well tolerated. There was no evidence of occurrence of a serotonin syndrome. After augmentation with carbamazepine, treatment related adverse events were: Nausea in one case, diarrhea in one case, and rash in two cases. In conclusion, the results of this pilot study suggest that carbamazepine augmentation of a citalopram treatment in previous nonresponders to citalopram may be clinically useful, but that in addition carbamazepine can lead to a decrease of the plasma concentrations of the active enantiomer escitalopram.
Resumo:
Sensitive and specific methods based on gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) for the determination of levels of citalopram, desmethylcitalopram and didesmethylcitalopram in the plasma of patients treated with citalopram are presented, as well as a GC-MS procedure for the assay of the citalopram propionic acid derivative. After addition of a separate internal standard for each drug, liquid-solvent extraction is used to separate the basic compounds from the acid compounds. The demethylated amines are derivatized with trifluoroacetic anhydride, and the acid metabolite with methyl iodide. GC-MS is performed in the electron impact mode, as mass spectrometry by the (positive-ion) chemical ionization mode (methane and ammonia) appeared to be unsuitable. The limits of quantification were 1 ng/ml for citalopram and desmethylcitalopram and 2 ng/ml for the other metabolites. The correlation coefficients for the calibration curves (range 10-500 ng/ml) were > or = 0.999 for all compounds, whether determined by GC or GC-MS.
Resumo:
Two hybrid compounds comprising an antimetastatic ruthenium-arene fragment tethered to an indazole-3-carboxylic acid derivative that inhibits aerobic glycolysis in cancer cells have been prepared and evaluated in a variety of cancer cell lines, including highly relevant human glioblastoma cells, with an apparent synergistic action between the two components observed.
Resumo:
Plasma and cerebrospinal fluid (CSF) concentrations of the enantiomers of citalopram (CIT), its N-demethylated metabolite demethylcitalopram (DCIT) and its deaminated metabolite citalopram propionic acid derivative (CIT-PROP) were measured in plasma and CSF in 22 depressed patients after a 4-week treatment with 40 mg/d citalopram, which was preceded by a 1-week washout period. CSF 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were measured at baseline and after the 4-week CIT medication period. Patients were assessed clinically, using the Hamilton Depression Rating Scale (21-item HAM-D): at baseline and then at weekly intervals. CSF concentrations of S-CIT and R-CIT were 10.6 +/- 4.3 and 20.9 +/- 6 ng/mL, respectively, and their CSF/plasma ratios were 52% +/- 9% and 48% +/- 6%, respectively. The CIT treatment resulted in a significant decrease (28%) of 5-HIAA (P < 0.0001) and a significant increase (41%) of HVA in the CSF. Multiple linear regression analyses were performed to identify the impact of plasma and CSF CIT enantiomers and its metabolites on CSF monoamine metabolites and clinical response. There were 10 responders as defined by a > or =50% decrease of the HAM-D score (DeltaHAM-D) after the 4-week treatment. DeltaHAM-D correlated (Spearman) significantly with CSF S-CIT (r = - 0.483, P < 0.05), CSF S-CIT-PROP (r = -0.543, P = 0.01) (a metabolite formed from CIT by monoamine oxidase [MAO]) and 5-HIAA decrease (Delta5-HIAA) (r = 0.572, P = 0.01). The demonstrated correlations between pharmacokinetic parameters and the clinical outcome as well as 5-HIAA changes indicate that monitoring of plasma S-CIT, CSF S-CIT and CSF S-CIT-PROP may be of clinical relevance.
Resumo:
Kinetic parameters of T cell receptor (TCR) interactions with its ligand have been proposed to control T cell activation. Analysis of kinetic data obtained has so far produced conflicting insights; here, we offer a consideration of this problem. As a model system, association and dissociation of a soluble TCR (sT1) and its specific ligand, an azidobenzoic acid derivative of the peptide SYIPSAEK-(ABA)I (residues 252-260 from Plasmodium berghei circumsporozoite protein), bound to class I MHC H-2K(d)-encoded molecule (MHCp) were studied by surface plasmon resonance. The association time courses exhibited biphasic patterns. The fast and dominant phase was assigned to ligand association with the major fraction of TCR molecules, whereas the slow component was attributed to the presence of traces of TCR dimers. The association rate constant derived for the fast phase, assuming a reversible, single-step reaction mechanism, was relatively slow and markedly temperature-dependent, decreasing from 7.0 x 10(3) at 25 degrees C to 1.8 x 10(2) M(-1).s(-1) at 4 degrees C. Hence, it is suggested that these observed slow rate constants are the result of unresolved elementary steps of the process. Indeed, our analysis of the kinetic data shows that the time courses of TCR-MHCp interaction fit well to two different, yet closely related mechanisms, where an induced fit or a preequilibrium of two unbound TCR conformers are operational. These mechanisms may provide a rationale for the reported conformational flexibility of the TCR and its unusual ligand recognition properties, which combine high specificity with considerable crossreactivity.
Resumo:
A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.
Resumo:
Photodynamic Therapy (PDT) is a clinical procedure, which utilize a photosensitive compound and light. This is a new modality of treatment for cancer, aged related macular degenerescence (AMD), psoriasis, arthritis, arterial restenosis, etc which exhibits efficiency, less traumatic effects, low recovery time and few co-lateral effects. The first officially approved drug for PDT by the Food and Drug Administration (EUA) is Photofrinâ, which is applied for cancer. A new generation drug for PDT, Visudyneâ was recently approved to treat AMD; its photoactive compound is BPDMA, a benzoporphyrin mono-acid derivative (chlorin-type molecule). A concise history, technical information and some drugs for PDT are reported.
Resumo:
The adipic and phthalic acid esters are plasticizers, have low water solubility, high partition octanol/water coefficients (Kow) and accumulate in soil and sediments. These compounds are considered teratogenic, carcinogenic and endocrine disruptors chemicals. This study evaluated the bioremediation of tropical soil contaminated with plasticizers process wastes, in aerobic conditions, with and without introduction of acclimated bacteria. It was selected 200 kg of contaminated tropical soil for the biodegradation study. The plasticizers concentrations in soil ranged between 153 mgDOA/kg up to 15552 mgDIDP/kg and after 90 days of biodegradation, the lower removal efficiencies were 72% with a 1-2 log simultaneous bacterial growth.
Resumo:
A new salicylic acid derivative, pentacosanyl salicylate, was isolated from the leaves of the plant toxic to cattle, Riedeliella graciliflora, in addition to a digalactosyldiacylglycerol (DGDG), 1,2-di-O-α-linolenoyl-3-O-α-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-glycerol, kaempferol-3-O-β-D-glucopyranoside, kaempferol-3-O-α-L-rhamnopyranoside, quercetin-3-O-α-L-rhamnopyranoside, rutin, (+)-catechin and the dimer (+)-catechin-(4β-8)-catechin, glutinol, squalene, β-sitosterol, stigmasterol, phytol, β-carotene, α-tocopherol and ficaprenol-12. Their structures were determined using spectral techniques (MS, IR, and NMR-1D and 2D) and based on literature data.
Resumo:
MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 µM, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.
Resumo:
Hawthorn (Crataegus sp.) is widely distributed in the northern hemisphere (Asia, Europe and North America). It has been used as a medicinal material and food for hundreds of years both in Europe and in China. Clinical investigations and other research suggest that extracts of hawthorn fruits and leaves have multiple health effects including hypolipidaemic, anti-atherosclerotic, hypotensive, cardioprotective and blood vessel relaxing activities. Hawthorn fruit extracts have also displayed antioxidant and radical scavenging activities. Emblic leafflower fruit (Phyllanthus emblica) is widely used in Chinese and Indian traditional medicine. It has been found to have anti-cancer, hypoglycaemic and hypolipidaemic activities as well as cardioprotective effects and antioxidant activity. The fruit is currently used as a functional food targeted at obese people in China. Phenolic compounds, procyanidins (PCs), flavonols and C-glycosyl flavones in hawthorn and hydrolysable tannins in emblic leafflower fruits are considered among the major bioactive compounds in these berries. Moreover, hawthorn and emblic leafflower fruits are rich in vitamin C, triterpenoids, fruit acids, sugar alcohols and some other components with beneficial effects on the health of human beings. The aim of the thesis work was to characterise the major phenolic compounds in hawthorn fruits and leaves and emblic leafflower fruits as well as other components contributing to the nutritional profile and sensory properties of hawthorn fruits. Differences in the content and compositional profile of the major phenolic compounds, sugars, acids and sugar alcohols within various origins and species of hawthorn were also investigated. Acids, sugars and sugar alcohols in the fruits of different origins/cultivars belonging to three species (C. pinnatifida, C. brettschneideri and C. scabrifolia) of hawthorn were analysed by gas chromatography (GC-FID) and mass spectrometry (Publication I). Citric acid, quinic acid, malic acid, fructose, glucose, sorbitol and myo-inositol were found in all the subspecies. Sucrose was present only in C. scabrifolia and three cultivars of C. pinnatifida var. major. Forty-two phenolic compounds were identified/tentatively identified in fruits of C. pinnatifida var. major by polyamide column chromatography combined with high-performance liquid chromatograph-electrospray ionisation mass spectrometry (HPLC-ESI-MS) (Publication II). Ideain, chlorogenic acid, procyanidin (PC) B2, (-)-epicatechin, hyperoside and isoquercitrin were the major phenolic components identified. In addition, 35 phenolic compounds were tentatively identified based on UV and mass spectra. Eleven major phenolic compounds (hyperoside, isoquercitrin, chlorogenic acid, ideain, (-)-epicatechin, two PC dimers, three PC trimers and a PC dimer-hexoside) were quantified in the fruits of 22 cultivars/origins of three species of Chinese hawthorn by HPLC-ESI-MS with single ion recording function (SIR) (Publication III). The fruits of the hawthorn cultivars/origins investigated fell into two groups, one rich in sugars and flavonols, the other rich in acids and procyanidins. Based on the compositional features, different biological activities and sensory properties may be expected between cultivars/origins of the two groups. The results suggest that the contents of phenolic compounds, acids, sugars and sugar alcohols may be used as chemotaxonomic information distinguishing the hawthorn species from each other. Phenolic compounds in fruits and leaves of C. grayana and their changes during fruit ripening/harvesting were investigated using HPLC-UV-ESI-MS (Publication IV). (-)-Epicatechin, PC B2 and C1, hyperoside and a quercetin-pentoside were the major phenolic compounds in both fruits and leaves. Three C-glycosyl flavones (a luteolin-C-hexoside, a methyl luteolin-C-hexoside and an apigenin-C-hexoside) were present in leaves in abundance, but only at trace levels in fruits. Ideain and 5-O-caffeoylquinic acid were found in fruits only. Additionally, eleven phenolic compounds were identified/tentatively identified in both leaves and fruits (three B-type PC trimers, two B-type PC tetramers, a quercetin-rhamnosylhexoside, a quercetin-pentoside, a methoxykaempferol-methylpentosylhexoside, a quercetin-hexoside acetate, a methoxykaempferol-pentoside, chlorogenic acid and an unknown hydroxycinnamic acid derivative). The total content of phenolic compounds reached the highest level by the end of August in fruits and by the end of September in leaves. The compositional profiles of phenolic compounds in fruits and leaves of C. grayana were different from those of C. pinnatifida, C. brettschneideri, C. scabrifolia, C. pinnatifida. var. major, C. monogyna, C. laevigata and C. pentagyna. Phenolic compounds in emblic leafflower fruits were characterised by Sephadex LH-20 column chromatography combined with HPLC-ESI-MS (Publication V). A mucic acid gallate, three isomers of mucic acid lactone gallate, a galloylglucose, gallic acid, a digalloylglucose, putranjivain A, a galloyl-HHDP-glucose, elaeocarpusin and chebulagic acid represented the major phenolic compounds in fruits of emblic leafflower. In conclusion, results of this study significantly increase the current knowledge on the key bioactive and nutritional components of hawthorn and emblic leafflower fruits. These results provide important information for research on the mechanism responsible for the health benefits of these fruits.
Resumo:
De nombreux travailleurs utilisent le captan et le folpet comme fongicides en agriculture, mais leur exposition n’est pas toujours mesurée de manière spécifique et précise. La surveillance biologique est un excellent outil à cet effet puisqu’elle permet de quantifier l’exposition réelle. Toutefois, la majorité des connaissances toxicologiques pour ces fongicides proviennent d’études sur les animaux, et les données chez l’humain sont limitées. Le but du présent projet est donc de développer des outils de surveillance biologique pour évaluer l’exposition de travailleurs au captan et au folpet. Dans cette perspective, le projet a été subdivisé en trois parties complémentaires, soit i) de développer des méthodes analytiques spécifiques pour quantifier les biomarqueurs d’intérêt du captan, à savoir le tétrahydrophtalimide (THPI), et du folpet, à savoir le phtalimide (PI) et l’acide phtalique, dans le plasma et l’urine; ii) de déterminer la toxicocinétique des deux fongicides en exposant des volontaires de façon aigüe à de faibles doses de captan ou de folpet par voie orale et cutanée dans des conditions semi-contrôlées et en quantifiant les biomarqueurs dans chacune des deux matrices, excepté l’acide phtalique qui a été mesuré seulement dans l’urine; iii) de valider les biomarqueurs d’exposition sélectionnés et d’évaluer l’exposition réelle des travailleurs et les voies prédominantes d’exposition au captan et au folpet en collectant des données biologiques chez des travailleurs en arboriculture et en viticulture lors d’activités de traitement et d’effeuillage pendant sept jours consécutifs. Selon ces travaux, le THPI et le PI sont deux biomarqueurs valides et spécifiques pour quantifier l’exposition au captan et au folpet, respectivement, chez l’humain. En effet, les méthodes développées pour ces deux métabolites sont robustes avec des limites de détection plus sensibles que celles rapportées dans la littérature, un taux de recouvrement de 90% pour le THPI et de 75% pour le PI, une très bonne linéarité (R2>0,99) et une bonne stabilité avec des variations intra- et inter-journalières faibles (RSD<15%). Elles ont permis de déterminer les profils cinétiques des deux métabolites chez les volontaires et chez les travailleurs. Ces derniers indiquent d’ailleurs une élimination rapide, avec une demi-vie d’élimination dans l’urine de 11,7 h et 18,7 h pour le THPI et de 27,3 h et 28,8 h pour le PI, respectivement après une absorption par voie orale et cutanée, ainsi qu’une faible absorption cutanée lorsque les valeurs sont comparées pour les deux voies d’exposition. Des profils parallèles sont aussi observés entre le PI et l’acide phtalique pour les volontaires et les agriculteurs, mais le folpet se retrouve davantage métabolisé sous forme d’acide phtalique que de PI. Quant à l’étude des agriculteurs, elle montre que la voie principale d’exposition de ces travailleurs est la voie cutanée. Il est aussi souligné qu’il est important 1) de favoriser les collectes d’urines complètes sur 24 h au urines ponctuelles, 2) de mesurer plusieurs métabolites, et 3) d’associer les données de surveillance biologique à la toxicocinétique. Ainsi, les connaissances acquises par cette étude peuvent s’appliquer à d’autres fongicides, voire d’autres substances.
Resumo:
La préparation de polymères à base d’acides biliaires, molécules biologiques, a attiré l'attention des chercheurs en raison des applications potentielles dans les domaines biomédicaux et pharmaceutiques. L’objectif de ce travail est de synthétiser de nouveaux biopolymères dont la chaîne principale est constituée d’unités d’acides biliaires. La polymérisation par étapes a été adoptée dans ce projet afin de préparer les deux principales classes de polymères utilisés en fibres textiles: les polyamides et les polyesters. Des monomères hétéro-fonctionnels à base d’acides biliaires ont été synthétisés et utilisés afin de surmonter le déséquilibre stoechiométrique lors de la polymérisation par étapes. Le dérivé de l’acide lithocholique modifié par une fonction amine et un groupement carboxylique protégé a été polymérisé en masse à températures élevées. Les polyamides obtenus sont très peu solubles dans les solvants organiques. Des polyamides et des polyesters solubles en milieu organique ont pu être obtenus dans des conditions modérées en utilisant l’acide cholique modifié par des groupements azide et alcyne. La polymérisation a été réalisée par cycloaddition azoture-alcyne catalysée par l'intermédiaire du cuivre(Ι) avec deux systèmes catalytiques différents, le bromure de cuivre(I) et le sulfate de cuivre(II). Seul le bromure de cuivre(Ι) s’est avéré être un catalyseur efficace pour le système, permettant la préparation des polymères avec un degré de polymérisation égale à 50 et une distribution monomodale de masse moléculaire (PDI ˂ 1.7). Les polymères synthétisés à base d'acide cholique sont thermiquement stables (307 °C ≤ Td ≤ 372 °C) avec des températures de transition vitreuse élevées (137 °C ≤ Tg ≤ 167 °C) et modules de Young au-dessus de 280 MPa, dépendamment de la nature chimique du lien.
Resumo:
Two field trials were conducted using established apple (Malus cv. Golden Delicious) and pear (Pyrus communis 'Williams' Bon Chretien') to assess the efficacy of three commercially available systemic inducing resistance (SIR) products, Messenger (a.i. Harpin protein), Phoenix (a.i. Potassium phosphite) and Rigel (a.i. Salicylic acid derivative) applied at four different growth stages of tree development (bud break, green cluster, 90% petal fall, early fruitlet) against the foliar pathogens Venturia inaequalis and Venturia pirina which cause apple and pear scab respectively. A conventional synthetic fungicide (penconazole) used within the UK for apple and pear scab control was included for comparison. Little efficacy as scab protectants was demonstrated when each SIR product and penconazole was applied at only two growth stages (bud break, green cluster). However when the above compounds were applied at three or more growth stages efficacy as scab protectants was confirmed. The synthetic fungicide penconazole provided greatest protection against apple and pear scab in both the 2006 and 2007 field trials. There was little difference in the magnitude of scab protection conferred by each SIR agent. Results suggest application of at least three sprays during bud break to early fruitlet formation with an appropriate SIR agent may provide a useful addition to existing methods of apple and pear scab management under field conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS-ET), but we have elected the following as our first choice: 2.5-fold molar excess of 0.04-0.08 M Boc or Fmoc-amino acid derivative, equimolar amount of DIC/HOBt (1:1)or TBTU/DIPEA(1:3), 25% DMSO/toluene, 60 degrees C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave-SPPS, peptides containing L-Ser, L-His, L-Cys and/or L-Met were manually synthesized traditionally, at 60 degrees C using conventional heating and at 60 degrees C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave-assisted coupling of L-Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 degrees C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave-assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS-ET and suggests alternative conditions for microwave-assisted SPPS. Copyright (C) 2009 European Peptide Society and John Wiley & Sons, Ltd.