972 resultados para photo-oxidative protection


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Berries contain several bioactive compounds that can protect against oxidative stress. In this study we evaluated the protective effect of different sequential extracts (ethyl acetate, ethanol and water) of seven berry species: bilberry (Vaccinium myrtillus), blackcurrant (Ribes nigrum), elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea), rose hips (Rosa sp.), sea buckthorn (Hippohae rhamnoides) and strawberry (Fragaria × ananassa). The protective effect was tested on human erythrocytes and the antioxidant capacity was also evaluated in vitro by the FRAP assay. In the erythrocyte assay all sea buckthorn extracts were superior in antioxidant effect to other berry extracts. The ethyl acetate extract of bilberries, and the ethanol and water extracts of blackcurrants, also protected the erythrocytes from oxidation. In contrast, water extracts of rose hips, bilberries and strawberries had a pro-oxidant effect on erythrocytes. The water extract of rose hips was superior to the other berry extracts in the FRAP assay. Thus, the results of the erythrocyte assay did not correlate with the results of the FRAP assay, but provided additional insights into the potential protective effects of berry extracts against oxidative stress. © 2012 - IOS Press and the authors. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: We evaluated the protective activity of an extract from a by-product such as olive stones, through its ability to inhibit H2O2 induced apoptosis in the SH-SY5Y human neuroblastoma cell line. Material and methods: To such end, 20,000 cells/well were cultivated and differentiation with retinoic acid was initiated. Once the cells were differentiated, apoptosis was induced with and without H2O2 extract. Finally, cDNA extraction was performed, and pro-apoptotic genes Bax and anti-apoptotic genes Bcl-2 were analyzed. Quantification of the gene expression was performed using the GAPDH gene marker. Results: Cell viability with the extract is 97.6% (SD 5.7) with 10 mg/l and 62.8% (SD 1.2) to 50 mg/l, using 10 mg/l for the biomarker assay. The retinoic acid differentiated SH-S cell line (10 µM) shows a clear apoptosis when treated with H2O2 150 µM, with a Bax/Bcl-2 ratio of 3.75 (SD 0.80) in contrast to the differentiated control cells subjected to H2O2 and with extract, which have the same ratio of 1.02 (SD 0.01-0.03). Conclusion: The olive stone extract shows anti-apoptotic activity in the provoked cell death of SH-SY5Y human neuroblastoma cells in their normal state, defending them from oxidative stress which produces a significant increase in the apoptotic gene ratio in contrast to anti-apoptotic genes (Bax/Bcl-2).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) decreases bioavailability of nitric oxide (NO) and impairs NO-dependent relaxations. Like NO, hydrogen sulfide (H2S) is an antioxidant and vasodilator; however, the effect of ROS on H2S-induced relaxations is unknown. Here we investigated whether ROS altered the effect of H2S on vascular tone in mouse aorta and determined whether resveratrol (RVT) protects it via H2S. Pyrogallol induced ROS formation. It also decreased H2S formation and relaxation induced by l-cysteine and in mouse aorta. Pyrogallol did not alter sodium hydrogensulfide (NaHS)-induced relaxation suggesting that the pyrogallol effect on l-cysteine relaxations was due to endogenous H2S formation. RVT inhibited ROS formation, enhanced l-cysteine-induced relaxations and increased H2S level in aortas exposed to pyrogallol suggesting that RVT protects against "H2S-dysfunctions" by inducing H2S formation. Indeed, H2S synthesis inhibitor AOAA inhibited the protective effects of RVT. RVT had no effect on Ach-induced relaxation that is NO dependent and the stimulatory effect of RVT on H2S-dependent relaxation was also independent of NO. These results demonstrate that oxidative stress impairs endogenous H2S-induced relaxations and RVT offers protection by inducing H2S suggesting that targeting endogenous H2S pathway may prevent vascular dysfunctions associated by oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection and potential treatment of oxidative stress in biological systems has been explored using isoindoline-based nitroxide radicals. A novel tetraethyl-fluorescein nitroxide was synthesised for its use as a profluorescent probe for redox processes in biological systems. This tetraethyl system, as well as a tetramethyl-fluorescein nitroxide, were shown to be sensitive and selective probes for superoxide in vitro. The redox environment of cellular systems was also explored using the tetramethylfluorescein species based on its reduction to the hydroxylamine. Flow cytometry was employed to assess the extent of nitroxide reduction, reflecting the overall cellular redox environment. Treatment of normal fibroblasts with rotenone and 2-deoxyglucose resulted in an oxidising cellular environment as shown by the lack of reduction of the fluorescein-nitroxide system. Assessment of the tetraethyl-fluorescein nitroxide system in the same way demonstrated its enhanced resistance to reduction and offers the potential to detect and image biologically relevant reactive oxygen species directly. Importantly, these profluorescent nitroxide compounds were shown to be more effective than the more widely used and commercially available probes for reactive oxygen species such as 2’,7’-dichlorodihydrofluorescein diacetate. Fluorescence imaging of the tetramethyl-fluorescein nitroxide and a number of other rhodamine-nitroxide derivatives was undertaken, revealing the differential cellular localisation of these systems and thus their potential for the detection of redox changes in specific cellular compartments. As well as developing novel methods for the detection of oxidative stress, a number of novel isoindoline nitroxides were synthesised for their potential application as small-molecule antioxidants. These compounds incorporated known pharmacophores into the isoindoline-nitroxide structure in an attempt to increase their efficacy in biological systems. A primary and a secondary amine nitroxide were synthesised which incorporated the phenethylamine backbone of the sympathomimetic amine class of drugs. Initial assessment of the novel primary amine derivative indicated a protective effect comparable to that of 5-carboxy-1,1,3,3- tetramethylisoindolin-2-yloxyl. Methoxy-substituted nitroxides were also synthesised as potential antioxidants for their structural similarity to some amphetamine type stimulants. A copper-catalysed methodology provided access to both the mono- and di-substituted methoxy-nitroxides. Deprotection of the ethers in these compounds using boron tribromide successfully produced a phenolnitroxide, however the catechol moiety in the disubstituted derivative appeared to undergo reaction with the nitroxide to produce quinone-like degradation products. A novel fluoran-nitroxide was also synthesised from the methoxy-substituted nitroxide, providing a pH-sensitive spin probe. An amino-acid precursor containing a nitroxide moiety was also synthesised for its application as a dual-action antioxidant. N-Acetyl protection of the nitroxide radical was necessary prior to the Erlenmeyer reaction with N-acetyl glycine. Hydrolysis and reduction of the azlactone intermediate produced a novel amino acid precursor with significant potential as an effective antioxidant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are a primary cause of cellular damage that leads to cell death. In cells, protection from ROS-induced damage and maintenance of the redox balance is mediated to a large extent by selenoproteins, a distinct family of proteins that contain selenium in form of selenocysteine (Sec) within their active site. Incorporation of Sec requires the Sec-insertion sequence element (SECIS) in the 3'-untranslated region of selenoproteins mRNAs and the SECIS-binding protein 2 (SBP2). Previous studies have shown that SBP2 is required for the Sec-incorporation mechanism; however, additional roles of SBP2 in the cell have remained undefined. We herein show that depletion of SBP2 by using antisense oligonucleotides (ASOs) causes oxidative stress and induction of caspase- and cytochrome c-dependent apoptosis. Cells depleted of SBP2 have increased levels of ROS, which lead to cellular stress manifested as 8-oxo-7,8-dihydroguanine (8-oxo-dG) DNA lesions, stress granules, and lipid peroxidation. Small-molecule antioxidants N-acetylcysteine, glutathione, and α-tocopherol only marginally reduced ROS and were unable to rescue cells fully from apoptosis, indicating that apoptosis might be directly mediated by selenoproteins. Our results demonstrate that SBP2 is required for protection against ROS-induced cellular damage and cell survival. Antioxid. Redox Signal. 12, 797–808.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scope: Coffee is among the most frequently consumed beverages. Its consumption is inversely associated to the incidence of diseases related to reactive oxygen species; the phenomenon may be due to its antioxidant properties. Our primary objective was to investigate the impact of consumption of a coffee containing high levels of chlorogenic acids on the oxidation of proteins, DNA and membrane lipids; additionally, other redox biomarkers were monitored in an intervention trial. Methods and results: The treatment group (n=36) consumed instant coffee co-extracted from green and roasted beans, whereas the control consumed water (800 mL/P/day, 5 days). A global statistical analysis of four main biomarkers selected as primary outcomes showed that the overall changes are significant. 8-Isoprostaglandin F2α in urine declined by 15.3%, 3-nitrotyrosine was decreased by 16.1%, DNA migration due to oxidized purines and pyrimidines was (not significantly) reduced in lymphocytes by 12.5 and 14.1%. Other markers such as the total antioxidant capacity were moderately increased; e.g. LDL and malondialdehyde were shifted towards a non-significant reduction. Conclusion: The oxidation of DNA, lipids and proteins associated with the incidence of various diseases and the protection against their oxidative damage may be indicative for beneficial health effects of coffee.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was undertaken to determine the role of glutathione peroxidase3 (gpx3) in phospholipid protection in cells. Wild-type (WT) cells showed an overall increase in phospholipids upon 50 mu M cadmium (Cd)-treatment, whereas an untreated gpx3 Delta strain showed a drastic reduction in overall phospholipids which was further reduced with 50 mu M Cd. In WT cells, Cd-exposure increased the short chain fatty acids and decreased the unsaturated fatty acids and the magnitude was high in Cd-treated gpx3 Delta cells. Purified recombinant gpx3p showed higher activity with phospholipid hydroperoxides than shorter hydroperoxides. An increase in gpx activity was observed in Cd-treated WT cells and no such alteration was observed in gpx3 Delta. WT cells treated with Cd showed an increase in MDA over untreated, while untreated gpx3 Delta cells themselves showed a higher level of MDA which was further enhanced with Cd-treatment. Iron, zinc and calcium levels were significantly altered in WT and gpx3 Delta cells during Cd-treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative damage, through increased production of free radicals, is believed to be involved in UV-induced cataractogenesis (eye lens opacification). The possibility of UVB radiation causing damage to important lenticular enzymes was assessed by irradiating 3 months old rat lenses (in RPMI-1640 medium) at 300 nm (100 mu Wcm(-2)) for 24 h, in the absence and presence of ascorbic acid, alpha-tocopherol acetate and beta-carotene. UVB irradiation resulted in decreased activities of hexokinase, glucose-6-phosphate dehydrogenase, aldose reductase, and Na, K- ATPase by 42, 40, 44 and 57% respectively. While endopeptidase activity (229%) and lipid peroxidation (156%) were increased, isocitrate dehydrogenase activity was not altered on irradiation. In the presence of externally added ascorbic acid, tocopherol and beta-carotene (separately) to the medium, the changes in enzyme activities (except endopeptidase) and increased lipid peroxidation, due to UVB exposure, were prevented. These results suggest that UVB radiation exerts oxidative damage on lens enzymes and antioxidants were protective against this damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes of 2-(2'-pyridyl)-1,10-phenanthroline (pyphen), viz. VO(pyphen)(acac)](ClO4) (1), VO(pyphen)(anacac)](ClO4) (2) and VO(pyphen)(cur)](ClO4) (3), where acac is acetylacetonate (in 1), anacac is anthracenylacetylacetonate (in 2) and cur is curcumin monoanion (in 3) were synthesized, characterized and their photo-induced DNA cleavage activities and photo-cytotoxicities studied. The complexes are 1: 1 electrolytes in DMF. The one-electron paramagnetic complexes show a d-d band near 760 nm in DMF. Complexes 2 and 3 are blue and green emissive, respectively, in DMSO. The complexes exhibit irreversible V-IV/V-III reductive responses near -1.1 V and V-V/V-IV oxidative responses near 0.85 V vs. SCE in DMF-0.1 M TBAP. Complexes 2 and 3 display significant and selective photo-cytotoxicity upon irradiation with visible light giving an IC50 value of about 5 mu M against HeLa and MCF-7 cancer cells; they are significantly less-toxic against normal 3T3 control cells and in the absence of light. Complex 1 was used as a control. Both cytosolic and nuclear localization of the complexes were observed on the basis of fluorescence imaging. The complexes, avid binders to calf thymus (ct) DNA, were found to photocleave supercoiled pUC19 DNA upon irradiation with near-IR light (785 nm) by generating hydroxyl radical (OH) as the reactive oxygen species (ROS). Cell death events noted with HeLa and MCF-7 cell lines likely are attributable to apoptotic pathways involving light-assisted generation of intracellular ROS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress due to excessive accumulation of reactive oxygen or nitrogen species in the brain as seen in certain neurodegenerative diseases can have deleterious effects on neurons. Hydrogen peroxide, endogenously generated in neurons under normal physiological conditions, can produce an excess of hydroxyl radical via a Fenton mediated mechanism. This may induce acute oxidative injury if not scavenged or removed effectively by antioxidants. There are several biochemical assay methods to estimate oxidative injury in cells; however, they do not provide information on the biochemical changes as the cells get damaged progressively under oxidative stress. Raman microspectroscopy offers the possibility of real time monitoring of the chemical composition of live cells undergoing oxidative stress under physiological conditions. In the present study, a hippocampal neuron coculture was used to observe the acute impact of hydroxyl radicals generated by hydrogen peroxide in the presence of Fe2+ (Fenton reaction). Raman peaks related to nucleic acids (725, 782, 1092, 1320, 1340, 1420, and 1576 cm(-1)) showed time-dependent changes over the experimental period (60 mm), indicating the breakdown of the phosphodiester backbone as well as nuclear bases. Interestingly, ascorbic acid (a potent antioxidant) when cotreated with Fenton reactants showed protection of cells as inferred from the Raman spectra, presumably by scavenging hydroxyl radicals. Little or no change in the Raman spectra was observed for untreated control cells and for cells exposed to Fe2+ only, H2O2 only, and ascorbate only. A live dead assay study also supported the current observations. Hence, Raman microspectroscopy has the potential to be an excellent noninvasive tool for early detection of oxidative stress that is seen in neurodegenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylglyoxal (MG) is a reactive metabolic intermediate generated during various cellular biochemical reactions, including glycolysis. The accumulation of MG indiscriminately modifies proteins, including important cellular antioxidant machinery, leading to severe oxidative stress, which is implicated in multiple neurodegenerative disorders, aging, and cardiac disorders. Although cells possess efficient glyoxalase systems for detoxification, their functions are largely dependent on the glutathione cofactor, the availability of which is self-limiting under oxidative stress. Thus, higher organisms require alternate modes of reducing the MG-mediated toxicity and maintaining redox balance. In this report, we demonstrate that Hsp31 protein, a member of the ThiJ/DJ-1/PfpI family in Saccharomyces cerevisiae, plays an indispensable role in regulating redox homeostasis. Our results show that Hsp31 possesses robust glutathione-independent methylglyoxalase activity and suppresses MG-mediated toxicity and ROS levels as compared with another paralog, Hsp34. On the other hand, glyoxalase-defective mutants of Hsp31 were found highly compromised in regulating the ROS levels. Additionally, Hsp31 maintains cellular glutathione and NADPH levels, thus conferring protection against oxidative stress, and Hsp31 relocalizes to mitochondria to provide cytoprotection to the organelle under oxidative stress conditions. Importantly, human DJ-1, which is implicated in the familial form of Parkinson disease, complements the function of Hsp31 by suppressing methylglyoxal and oxidative stress, thus signifying the importance of these proteins in the maintenance of ROS homeostasis across phylogeny.