902 resultados para phase-contrast imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several approaches for the non-invasive MRI-based measurement of the aortic pressure waveform over the heart cycle have been proposed in the last years. These methods are normally based on time-resolved, two-dimensional phase-contrast sequences with uni-directionally encoded velocities (2D PC-MRI). In contrast, three-dimensional acquisitions with tridirectional velocity encoding (4D PC-MRI) have been shown to be a suitable data source for detailed investigations of blood flow and spatial blood pressure maps. In order to avoid additional MR acquisitions, it would be advantageous if the aortic pressure waveform could also be computed from this particular form of MRI. Therefore, we propose an approach for the computation of the aortic pressure waveform which can be completely performed using 4D PC-MRI. After the application of a segmentation algorithm, the approach automatically computes the aortic pressure waveform without any manual steps. We show that our method agrees well with catheter measurements in an experimental phantom setup and produces physiologically realistic results in three healthy volunteers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arterial compliance has been shown to correlate well with overall cardiovascular outcome and it may also be a potential risk factor for the development of atheromatous disease. This study assesses the utility of 2-D phase contrast Magnetic Resonance (MR) imaging with intra-sequence blood pressure measurement to determine carotid compliance and distensibility. 20 patients underwent 2-D phase contrast MR imaging and also ultrasound-based wall tracking measurements. Values for carotid compliance and distensibility were derived from the two different modalities and compared. Linear regression analysis was utilised to determine the extent of correlation between MR and ultrasound derived parameters. In those variables that could be directly compared, an agreement analysis was undertaken. MR measures of compliance showed a good correlation with measures based on ultrasound wall-tracking (r=0.61, 95% CI 0.34 to 0.81 p=0.0003). Vessels that had undergone carotid endarterectomy previously were significantly less compliant than either diseased or normal contralateral vessels (p=0.04). Agreement studies showed a relatively poor intra-class correlation coefficient (ICC) between diameter-based measures of compliance through either MR or ultrasound (ICC=0.14). MRI based assessment of local carotid compliance appears to be both robust and technically feasible in most subjects. Measures of compliance correlate well with ultrasound-based values and correlate best when cross-sectional area change is used rather than derived diameter changes. If validated by further larger studies, 2-D phase contrast imaging with intra-sequence blood pressure monitoring and off-line radial artery tonometry may provide a useful tool in further assessment of patients with carotid atheroma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了硬X射线(类同轴)相位衬度成像的工作原理及其实验研究结果。X射线波长为0.08860nm,样品为未经任何处理的飞蛾,记录介质为X射线胶片。胶片经处理以后,用光学显微镜读出,可以看出样品的许多细节,尤其在折射率突变处。而同样条件下基于吸收衬度机制的硬X射线吸收成像,由于是弱吸收样品.没有观察到任何图像。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用模糊函数对部分相干源相X射线衬成像进行了详细的理论分析.列举了不同条件下的实验结果.通过与吸收成像相比较,相衬成像无疑对生物样品的内部结构有更高的对比度和可见度.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文介绍了近年来X射线位相衬度成像技术的发展状况,详细论述了X射线干涉相衬、衍射增强相衬,类同轴相衬和数字位相重构等几种典型的成像原理,讨论了影响成像衬度与分辨率的若干因素,并对位相成像的发展趋势作了展望。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了近年来硬X射线位相衬度成像技术的发展状况,详细论述了X射线干涉相衬、衍射增强相衬,类同轴相衬等几种典型的成像原理。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on the realization, characterization and analysis of ultracold bosonic and fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in optical lattices can be regarded as ideal model systems to investigate quantum many-body physics. In this work interacting ensembles of bosonic 87Rb and fermionic 40K atoms are employed to study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a versatile experimental setup, whose core feature is a blue-detuned optical lattice that is combined with Feshbach resonances and a red-detuned dipole trap to allow for independent control of tunneling, interactions and external confinement. The Fermi-Hubbard model, which plays a central role in the theoretical description of strongly correlated electrons, is experimentally realized by loading interacting fermionic spin mixtures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density distribution is measured, which allows to extract the global compressibility of the many-body state as a function of interaction and external confinement. Thereby, metallic and insulating phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator. In a second series of experiments interaction effects in bosonic lattice quantum gases are analyzed. Typically, interactions between microscopic particles are described as two-body interactions. As such they are also contained in the single-band Bose-Hubbard model. However, our measurements demonstrate the presence of multi-body interactions that effectively emerge via virtual transitions of atoms to higher lattice bands. These findings are enabled by the development of a novel atom optical measurement technique: In quantum phase revival spectroscopy periodic collapse and revival dynamics of the bosonic matter wave field are induced. The frequencies of the dynamics are directly related to the on-site interaction energies of atomic Fock states and can be read out with high precision. The third part of this work deals with mixtures of bosons and fermions in optical lattices, in which the interspecies interactions are accurately controlled by means of a Feshbach resonance. Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition is shifted towards lower lattice depths when bosons and fermions interact attractively. This observation is further analyzed by applying quantum phase revival spectroscopy to few-body systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions are proven to be modified by the presence of a fermion. This renormalization of bosonic interaction energies can explain the shift of the Mott insulator transition. The experiments of this thesis lay important foundations for future studies of quantum magnetism with fermionic spin mixtures as well as for the realization of complex quantum phases with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the single-band Hubbard model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The study sought to evaluate the ability of cardiac magnetic resonance (CMR) to monitor acute and long-term changes in pulmonary vascular resistance (PVR) noninvasively. Background PVR monitoring during the follow-up of patients with pulmonary hypertension (PH) and the response to vasodilator testing require invasive right heart catheterization. Methods An experimental study in pigs was designed to evaluate the ability of CMR to monitor: 1) an acute increase in PVR generated by acute pulmonary embolization (n = 10); 2) serial changes in PVR in chronic PH (n = 22); and 3) changes in PVR during vasodilator testing in chronic PH (n = 10). CMR studies were performed with simultaneous hemodynamic assessment using a CMR-compatible Swan-Ganz catheter. Average flow velocity in the main pulmonary artery (PA) was quantified with phase contrast imaging. Pearson correlation and mixed model analysis were used to correlate changes in PVR with changes in CMR-quantified PA velocity. Additionally, PVR was estimated from CMR data (PA velocity and right ventricular ejection fraction) using a formula previously validated. Results Changes in PA velocity strongly and inversely correlated with acute increases in PVR induced by pulmonary embolization (r = –0.92), serial PVR fluctuations in chronic PH (r = –0.89), and acute reductions during vasodilator testing (r = –0.89, p ≤ 0.01 for all). CMR-estimated PVR showed adequate agreement with invasive PVR (mean bias –1.1 Wood units,; 95% confidence interval: –5.9 to 3.7) and changes in both indices correlated strongly (r = 0.86, p < 0.01). Conclusions CMR allows for noninvasive monitoring of acute and chronic changes in PVR in PH. This capability may be valuable in the evaluation and follow-up of patients with PH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel type of microwave probes based on the loaded aperture geometry has been proposed and experimentally evaluated for dielectrics characterisation and high-resolution near-field imaging. Experimental results demonstrate the possibility of very accurate microwave spectroscopic characterisation of thin lossy dielectric samples and biological materials containing water. High-resolution images of the subwavelength lossy dielectric strips and wet and dry leaves have been obtained with amplitude contrast around 10-20 dB and spatial resolution better than one-tenth of a wavelength in the near-field zone. A microwave imaging scenario for the early-stage skin cancer identification based on the artificial dielectric model has also been explored. This model study shows that the typical resolution of an artificial malignant tumour with a characteristic size of one-tenth of a wavelength can be discriminated with at least 6 dB amplitude and 50° phase contrast from the artificial healthy skin and with more than 3 dB contrast from a benign lesion of the same size. It has also been demonstrated that the proposed device can efficiently deliver microwave energy to very small, subwavelength, focal areas which is highly sought in the microwave hyperthermia applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of a novel non-invasive tool for postoperative follow-up of patients postelective saphenous vein coronary artery bypass graft (CABG) was performed. Ten patients were included. Their bypass grafts supplied the right coronary artery (7), marginal branches (1), diagonal branches (2), and the circumflex artery (n=1). Each bypass was examined intraoperatively using Doppler flow measurement. Patients were examined with a 3-Tesla magnetic resonance imaging (MRI) scanner (MAGNETOM Verio, Siemens, Erlangen, Germany) within one week postsurgery using MR-angiography with an intravasal contrast agent and velocity encoded phase-contrast flow measurements. Intraoperative Doppler flow measurements revealed regular flow patterns in all vascular territories supplied. The median intraoperative flow rate was 50 ml/min with an inter-quartile range (IQR) of 42-70 ml/min. The clinical postoperative course was uneventful. MRI showed all grafts to be patent. The median postoperative flow rate was 50 ml/min (IQR: 32-65 ml/min). MRI flow rates agreed well with intraoperative Doppler flow measurements (mean difference: -2.8±20.1 ml/min). This initial study demonstrates that 3-Tesla MRI flow measurements correlated well with Doppler thus reconfirming the graft patency postCABG. Further refinement and broader application of this technique may facilitate follow-up postCABG potentially replacing empiric clinical judgment by reliable non-invasive imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: The splanchnic circulation has an important function in the body under both physiological and pathophysiological conditions. Despite its importance, no reliable noninvasive procedures for estimating splanchnic circulation have been established. The aim of this study was to evaluate MRI as a tool for assessing intra-abdominal blood flows of the aorta, portal vein (VPO) and the major intestinal and hepatic vessels. METHODS: In nine healthy volunteers, the proximal aorta (AOP) and distal abdominal aorta (AOD), superior mesenteric artery (SAM), celiac trunk (CTR), hepatic arteries (common and proper hepatic arteries, AHC and AHP, respectively), and VPO were localized on contrast-enhanced magnetic resonance angiography images. Volumetric flow was measured using a two-dimensional cine echocardiogram-gated phase contrast technique. Measurements were taken before and 30 min after continuous intravenous infusion of somatostatin (250 microg/h) and were independently evaluated by two investigators. RESULTS: Blood flow measured by MRI in the VPO, SAM, AOP, AHP, and CTR significantly decreased after drug infusion. Flows in the AOD and AHC showed a tendency to decrease (P>0.05). Interrater agreement on flows in MRI was very good for large vessels (VPO, AOP, and AOD), with a concordance correlation coefficient of 0.94, as well as for smaller vessels such as the CTR, AHC, AHP, and SAM (concordance correlation coefficient =0.78). CONCLUSION: Somatostatin-induced blood flow changes in the splanchnic region were reliably detected by MRI. MRI may be useful for the noninvasive assessment of blood flow changes in the splanchnic region.