965 resultados para parametric design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Daylight devices are important components of any climate responsive façade system. But, the evolution of parametric CAD systems and digital fabrication has had an impact on architectural form so that regular forms are shifting to complex geometries. Architectural and engineering integration of daylight devices in envelopes with complex geometries is a challenge in terms of design and performance evaluation. The purpose of this paper is to assess daylight performance of a building with a climatic responsive envelope with complex geometry that integrates shading devices in the façade. The case study is based on the Esplanade buildings in Singapore. Climate-based day-light metrics such as Daylight Availability and Useful Daylight Illuminance are used. DIVA (daylight simulation), and Grasshopper (parametric analysis) plug-ins for Rhinoceros have been employed to examine the range of performance possibilities. Parameters such as dimension, inclination of the device, projected shadows and shape have been changed in order to maximize daylight availability and Useful Daylight Illuminance while minimizing glare probability. While orientation did not have a great impact on the results, aperture of the shading devices did, showing that shading devices with a projection of 1.75 m to 2.00 m performed best, achieving target lighting levels without issues of glare.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parametric ship roll resonance is a phenomenon where a ship can rapidly develop high roll motion while sailing in longitudinal waves. This effect can be described mathematically by periodic changes of the parameters of the equations of motion, which lead to a bifurcation. In this paper, the control design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via simulation on a high-fidelity model of a vessel under parametric roll resonance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research is to assess daylight performance of buildings with climatic responsive envelopes with complex geometry that integrates shading devices in the façade. To this end two case studies are chosen due to their complex geometries and integrated daylight devices. The effect of different parameters of the daylight devices is analysed through Climate base daylight metrics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Control of sound transmission through the structure and reflection from the structure immersed in fluid media impose highly conflicting requirements on the design of the carpeted noise control linings. These requirements become even more stringent if the structure is expected to be moving with considerable speed particularly under intense hydrostatic pressure. Numerous configurations are possible for designing these linings. Therefore, in this paper, a few lining configurations are identified from the literature for parametric study so that the designer is provided with an environment to analyze and design the lining. A scheme of finite element analysis is used to analyze these linings for their acoustic performance. Commercial finite element software, NISA®, is used as a platform to develop a customized environment wherein design parameters of different configurations can be varied with consistency checks and generate the finite element meshes using the 8-noded hexahedral element. Four types of designs proposed and analysed here address the parameters of interest such as the echo reduction and the transmission loss. Study of the effect of different surface distributions of the cavities is carried out. Effect of static pressure on different designs is reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study is to improve the stability of pumping source of optical parametric amplifier. Analysis by simulation leads to the conclusion that the stability of the second harmonic can be improved by using properly the intensity of fundamental light and corresponding length of the crystal. By the method of the noncollinear two-pass second harmonic or the tandem second harmonic, the efficient crystal length is extended to a proper value, and the stability of the second harmonic output has been improved two times more than that for the fundamental light, and the conversion-efficiency is about 70% in experiment. When the variation of the fundamental light is about 10%, the variation of the second harmonic intensity has been controlled within 5%. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A vibration energy harvester designed to access parametric resonance can potentially outperform the conventional direct resonant approach in terms of power output achievable given the same drive acceleration. Although linear damping does not limit the resonant growth of parametric resonance, a damping dependent initiation threshold amplitude exists and limits its onset. Design approaches have been explored in this paper to passively overcome this limitation in order to practically realize and exploit the potential advantages. Two distinct design routes have been explored, namely an intrinsically lower threshold through a pendulum-lever configuration and amplification of base excitation fed into the parametric resonator through a cantilever-initial-spring configuration. Experimental results of the parametric resonant harvesters with these additional enabling designs demonstrated an initiation threshold up to an order of magnitude lower than otherwise, while attaining a much higher power peak than direct resonance. © 2014 IOP Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the attractive features of sound synthesis by physical modeling is the potential to build acoustic-sounding digital instruments that offer more flexibility and different options in its design and control than their real-life counterparts. In order to develop such virtual-acoustic instruments, the models they are based on need to be fully parametric, i.e., all coefficients employed in the model are functions of physical parameters that are controlled either online or at the (offline) design stage. In this letter we show how propagation losses can be parametrically incorporated in digital waveguide string models with the use of zero-phase FIR filters. Starting from the simplest possible design in the form of a three-tap FIR filter, a higher-order FIR strategy is presented and discussed within the perspective of string sound synthesis with digital waveguide models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A parametric study of cold-formed steel sections with web openings subjected to web crippling under end-one-flange (EOF) loading condition is undertaken, using finite element analysis, to investigate the effects of web holes and cross-section sizes. The holes are located either centred above the bearing plates or with a horizontal clear distance to the near edge of the bearing plates. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, the ratio of the length of bearing plates to the flat depth of the web and the location of the holes as defined by the distance of the hole from the edge of the bearing plate divided by the flat depth of web. In this study, design recommendations in the form of web crippling strength reduction factor equations are proposed, which are conservative when compared with the experimental and finite element results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.