215 resultados para paclitaxel
Resumo:
Paclitaxel is a microtubule inhibitory chemotherapeutic drug that is increasingly used for the treatment of solid tumours. In vitro studies have demonstrated that attenuating the spindle assemble checkpoint (SAC) alters the post-mitotic responses to paclitaxel. Furthermore, the aberrant expression of a number of the SAC proteins, MAD2, BUBR1, and Aurora A kinase, are associated with poor patient prognosis. We have identified a microRNA, miR-433, that regulates the expression of MAD2. Overexpression of miR-433 in Hela cells induced downregulation of MAD2 mRNA and protein expression. We have also shown that Hela cells overexpressing miR-433 and treated with paclitaxel are no longer capable of cyclin B stabilisation, and thus have lost the ability to activate the SAC in response to paclitaxel. In addition, cell viability assays showed that Hela cells overexpressing miR-433 and treated with paclitaxel have an attenuated response to paclitaxel compared with microRNA scrambled controls. We have characterised the levels of miR-433, MAD2 gene expression and MAD2 protein levels in a cohort of ovarian cancer cell lines. Cell viability assays on this cohort revealed that responsiveness to paclitaxel is associated with high MAD2 protein expression and lower miR-433 expression. We hypothesise that the expression of miR-433 when deregulated in cancer leads to altered MAD2 expression and a compromised SAC, a key feature underlying drug resistance to paclitaxel. In a pilot study of paired human breast tumour and normal breast tissue samples we have shown that expression levels of miR-433 are elevated in cancer tissue. Targeting this microRNA in cancer may improve the efficacy of paclitaxel in treating breast cancer and ovarian cancer.
Resumo:
Fundamentos. La eficacia de paclitaxel junto con rhG-CSF en la movilización de progenitores hematopoyéticos, se ha probada en pacientes hematológicos. Farmacogenéticamente el paclitaxel presenta una alta variabilidad inter-individual. Los genes CYP2C8 y ABCB1 involucrados en su metabolismo y transporte podrían afectar dicha variabilidad inter-individual. Objetivo. Evaluar en una cohorte retrospectiva de pacientes sometidos a TASPE, el efecto de algunos polimorfismos de nucleótido simple (del gen CYP2C8 y del gen ABCB1) sobre la eficacia en la movilización y toxicidad hematológica inducida por del paclitaxel. Materiales y Métodos. Un grupo de 107 pacientes recibieron paclitaxel y rhG-CSF como esquema movilizador. Los polimorfismos genotipados fueron para los genes ABCB1 rs1045642 A>G, ABCB1 rs2032582 C>A, ABCB1 rs2032582 C>T, CYP2C8 rs10509681 C>T, y CYP2C8 rs11572080 A>G. Resultados. El uso de paclitaxel logró éxito movilizador en más del 80% de los pacientes con linfomas o mieloma (p=0,0021), pero no lo fue en la leucemia aguda. En pacientes con mieloma la variable G>rs1045642 del gen ABCB1 se asoció con mala movilización (p= 0,018) y mayor toxicidad hematológica (p= 0,034). El alelo C>rs10509681 del gen CYP2C8 se relacionó con mayor toxicidad en pacientes con linfoma (p= 0,045) y mieloma múltiple (p=0,042), y portadores del alelo TT en homocigosis presentaron una mayor toxicidad hematológica comparada con los portadores CC o CT (p= 0,027). Conclusión. Este estudio sugiere que los SNPs de las variables alélicas analizadas en los genes CYP2C8 y ABCB1 en algunos grupos de pacientes inciden en la capacidad movilizadora y afectan el grado de toxicidad hematológica.
Resumo:
Objective: In previous studies cholesterol-rich nanoemulsions (LDE) resembling low-density lipoprotein were shown to concentrate in atherosclerotic lesions of rabbits. Lesions were pronouncedly reduced by treatment with paclitaxel associated with LDE. This study aimed to test the hypothesis of whether LDE-paclitaxel is able to concentrate in grafted hearts of rabbits and to ameliorate coronary allograft vasculopathy after the transplantation procedure. Methods: Twenty-one New Zealand rabbits fed 0.5% cholesterol were submitted to heterotopic heart transplantation at the cervical position. All rabbits undergoing transplantation were treated with cyclosporin A (10 mg . kg(-1) . d(-1) by mouth). Eleven rabbits were treated with LDE-paclitaxel (4 mg/kg body weight paclitaxel per week administered intravenously for 6 weeks), and 10 control rabbits were treated with 3 mL/wk intravenous saline. Four control animals were injected with LDE labeled with [(14)C]-cholesteryl oleate ether to determine tissue uptake. Results: Radioactive LDE uptake by grafts was 4-fold that of native hearts. In both groups the coronary arteries of native hearts showed no stenosis, but treatment with LDE-paclitaxel reduced the degree of stenosis in grafted hearts by 50%. The arterial luminal area in grafts of the treated group was 3-fold larger than in control animals. LDE-paclitaxel treatment resulted in a 7-fold reduction of macrophage infiltration. In grafted hearts LDE-paclitaxel treatment reduced the width of the intimal layer and inhibited the destruction of the medial layer. No toxicity was observed in rabbits receiving LDE-paclitaxel treatment. Conclusions: LDE-paclitaxel improved posttransplantation injury to the grafted heart. The novel therapeutic approach for heart transplantation management validated here is thus a promising strategy to be explored in future clinical studies. (J Thorac Cardiovasc Surg 2011;141:1522-8)
Resumo:
The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.
Resumo:
Lipid nanoemulsions (LDE) may be used as carriers of paclitaxel (PTX) and etoposide (ETP) to decrease toxicity and increase the therapeutic action of those drugs. The current study investigates the combined chemotherapy with PTX and ETP associated with LDE. Four groups of 10-20 B16F10 melanoma-bearing mice were treated with LDE-PTX and LDE-ETP in combination (LDE-PTX + ETP), commercial PTX and ETP in combination (PTX + ETP), single LDE-PTX, and single LDE-ETP. PTX and ETX doses were 9 mu mol/kg administered in three intraperitoneal injections on three alternate days. In two control groups mice were treated with saline solution or LDE alone. Tumor growth, metastasis presence, cell-cycle distribution, blood cell counts and histological data were analyzed. Toxicity of all treatments was evaluated in mice without tumors. Tumor growth inhibition was similarly strong in all treatment groups. However, there was a greater reduction in the number of animals bearing metastases in the LDE-PTX + ETP group (30 %) in comparison to the PTX + ETP group (82 %, p < 0.05). Reduction of cellular density, blood vessels and increase of collagen fibers in tumor tissues were observed in the LDE-PTX + ETP group but not in the PTX + ETP group, and in both groups reduced melanoma-related anemia and thrombocytosis were observed. Flow cytometric analysis suggested that LDE-PTX + ETP exhibited greater selectivity to neoplastic cells than PTX-ETP, showing arrest (65 %) in the G(2)/M phase of the cell cycle (p < 0.001). Toxicity manifested by weight loss and myelosuppression was markedly milder in the LDE-PTX + ETP than in the PTX + ETP group. LDE-PTX + ETP combined drug-targeting therapy showed markedly superior anti-cancer properties and reduced toxicity compared to PTX + ETP.
Resumo:
This paper describes a new method for the preparation of sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, DM-1, and 3-oxo-penta-1,4-dienyl-bis (2-methoxy-phenolate), DM-2. The aim of this work was to evaluate the antitumor effects of DM-1 in adjuvant chemotherapy for breast cancer treatment. Mice bearing mammary adenocarcinomas (Ehrlich ascites tumors) were treated with paclitaxel alone, DM-1 alone, and paclitaxel + DM-1. Tumor samples were used to perform cytological analysis by the Papanicolaou method and apoptosis analysis by annexin V and phosphorylated caspase 3. The paclitaxel + DM-1 group had decreased tumor areas and tumor volumes, and the frequency of metastasis was significantly reduced. This caused a decrease in cachexia, which is usually caused by the tumor. Furthermore, treatment with paclitaxel + DM-1 and DM-1 alone increased the occurrence of apoptosis up to 40% in tumor cells, which is 35% more than in the group treated with paclitaxel alone. This cell death was mainly caused through phosphorylated caspase 3 (11% increase in paclitaxel + DM-1 compared to the paclitaxel group), as confirmed by reduced malignancy criteria in the ascitic fluid. DM-1 emerges as a potential treatment for breast cancer and may act as an adjuvant in chemotherapy, enhancing antitumor drug activity with reduced side effects.
Resumo:
We performed a pooled analysis of three trials comparing titanium-nitride-oxide-coated bioactive stents (BAS) with paclitaxel-eluting stents (PES) in 1,774 patients. All patients were followed for 12 months. The primary outcomes of interest were recurrent myocardial infarction (MI), death and target lesion revascularization (TLR). Secondary endpoints were stent thrombosis (ST) and major adverse cardiac events (MACE) including MI, death and TLR. There were 922 patients in the BAS group and 852 in the PES group. BAS significantly reduced the risk of recurrent MI (2.7% vs. 5.6%; risk ratio 0.50, 95% CI 0.31-0.81; p = 0.004) and MACE (8.9% vs. 12.6%; risk ratio 0.71, 95% CI 0.54-0.94; p = 0.02) during the 12 months of follow up. In contrast, the differences between BAS and PES were not statistically significant with respect to TLR (risk ratio 0.98, 95% CI 0.68-1.41), death (risk ratio 0.96, 95% CI 0.61-1.51) and definite ST (risk ratio 0.28, 95% CI 0.05-1.47). In conclusion, the results of this analysis suggest that BAS is effective in reducing TLR and improves clinical outcomes by reducing MI and MACE compared with PES.
Resumo:
Background—Long-term comparative data of first-generation drug-eluting stents are scarce. We investigated clinical and angiographic outcomes of sirolimus-eluting (SES) and paclitaxel-eluting stents (PES) at 5 years as part of the Sirolimus-Eluting Versus Paclitaxel-Eluting Stents for Coronary Revascularization (SIRTAX) LATE study. Methods and Results—A total of 1012 patients were randomly assigned to SES or PES. Repeat angiography was completed in 444 of 1012 patients (43.8%) at 5 years. Major adverse cardiac events occurred in 19.7% of SES- and 21.4% of PES-treated patients (hazard ratio, 0.89; 95% confidence interval, 0.68 to 1.17; P=0.39) at 5 years. There were no differences between SES and PES in terms of cardiac death (5.8% versus 5.7%; P=0.35), myocardial infarction (6.6% versus 6.9%; P=0.51), and target lesion revascularization (13.1% versus 15.1%; P=0.29). Between 1 and 5 years, the annual rate of target lesion revascularization was 2.0% (95% confidence interval, 1.4% to 2.6%) for SES and 1.4% (95% confidence interval, 0.9% to 2.0%) for PES. Among patients undergoing paired angiography at 8 months and 5 years, delayed lumen loss amounted to 0.37±0.73 mm for SES and 0.29±0.59 mm for PES (P=0.32). The overall rate of definite stent thrombosis was 4.6% for SES and 4.1% for PES (P=0.74), and very late definite stent thrombosis occurred at an annual rate of 0.65% (95% confidence interval, 0.40% to 0.90%). Conclusions—Long-term follow-up of first-generation drug-eluting stents shows no significant differences in clinical and angiographic outcomes between SES and PES. The continuous increase in late lumen loss in conjunction with the ongoing risk of very late stent thrombosis suggests that vascular healing remains incomplete up to 5 years after implantation of first-generation drug-eluting stents.
Resumo:
Objectives: We aimed at comparing the long term clinical outcome of SES and PES in routine clinical practice. Background: Although sirolimus-eluting stents (SES) more effectively reduce neointimal hyperplasia than paclitaxel-eluting stents (PES), uncertainty prevails whether this difference translates into differences in clinical outcomes outside randomized controlled trials with selected patient populations and protocol-mandated angiographic follow-up. Methods: Nine hundred and four consecutive patients who underwent implantation of a drug-eluting stent between May 2004 and February 2005: 467 patients with 646 lesions received SES, 437 patients with 600 lesions received PES. Clinical follow-up was obtained at 2 years without intervening routine angiographic follow-up. The primary endpoint was a composite of death, myocardial infarction (MI), or target vessel revascularization (TVR). Results: At 2 years, the primary endpoint was less frequent with SES (12.9%) than PES (17.6%, HR = 0.70, 95% CI 0.50–0.98, P = 0.04). The difference in favor of SES was largely driven by a lower rate of target lesion revascularisation (TLR; 4.1% vs. 6.9%, P = 0.05), whereas rates of death (6.4% vs. 7.6%, P = 0.49), MI (1.9% vs. 3.2%, P = 0.21), or definite stent thrombosis (0.6% vs. 1.4%, P = 0.27) were similar for both stent types. The benefit regarding reduced rates of TLR was significant in nondiabetic (3.6% vs. 7.1%, P = 0.04) but not in diabetic patients (5.6% vs. 6.1%, P = 0.80). Conclusions: SES more effectively reduced the need for repeat revascularization procedures than PES when used in routine clinical practice. The beneficial effect is maintained up to 2 years and may be less pronounced in diabetic patients.
Resumo:
To investigate the ability of SYNTAX score and Clinical SYNTAX score (CSS) to predict very long-term outcomes in an all-comers population receiving drug-eluting stents.
Resumo:
We performed a propensity score matched analysis to explore whether TiNOX stents are superior to paclitaxel- (PES) and sirolimus-eluting stents (SES) in routine clinical practice.
Resumo:
This study sought to assess stent strut coverage, malapposition, protrusion, and coronary evaginations as markers of healing 5 years after implantation of sirolimus-eluting stents (SES) and paclitaxel-eluting stents (PES), by optical coherence tomography (OCT).
Resumo:
BACKGROUND: Paclitaxel and capecitabine have proven activity in the treatment of metastatic breast cancer (MBC). Paclitaxel increases the expression of thymidine phosphorylase, the enzyme that activates capecitabine. The purpose of this study was to evaluate the efficacy and tolerability of capecitabine in combination with weekly paclitaxel largely as first-line therapy in patients with MBC. PATIENTS AND METHODS: From April 2002 to September 2004, 19 patients with MBC received oral capecitabine (1,000 mg/m(2) twice daily on days 1-14) plus i.v. paclitaxel (80 mg/m(2) on days 1, 8 and 15) in a 21-day cycle for a maximum of 6 cycles. RESULTS: After a median follow-up of 19.3 months the overall response rate was 63% with 1 complete response (5%) and 11 partial responses (58%). Disease was stabilized in 1 patient (5%) and 3 patients had progressive disease (16%). Three patients were unable to be assessed for response to treatment. Median time to progression was 3.3 months, median time to treatment failure 3.0 months and median overall survival 13.8 months. A substantial number of patients experienced major side effects. The most common treatment-related adverse events were hand-foot syndrome (53%; grade 3: 37%), alopecia (42%; grade 3: 26%), diarrhea (32%; grade 3: 11%) and neurotoxicity (32%; grade 3: 16%). Hematologic toxicities were uncommon. CONCLUSION: The combination of capecitabine and paclitaxel appears to be active in MBC but the safety profile with the dosages used in this trial was unacceptably high and led to a short time to treatment failure. However, based on the efficacy data alternative schedules deserve further evaluation.
Resumo:
CONTEXT: Compared with bare metal stents, sirolimus-eluting and paclitaxel-eluting stents have been shown to markedly improve angiographic and clinical outcomes after percutaneous coronary revascularization, but their performance in the treatment of de novo coronary lesions has not been compared in a prospective multicenter study. OBJECTIVE: To compare the safety and efficacy of sirolimus-eluting vs paclitaxel-eluting coronary stents. DESIGN: Prospective, randomized comparative trial (the REALITY trial) conducted between August 2003 and February 2004, with angiographic follow-up at 8 months and clinical follow-up at 12 months. SETTING: Ninety hospitals in Europe, Latin America, and Asia. PATIENTS: A total of 1386 patients (mean age, 62.6 years; 73.1% men; 28.0% with diabetes) with angina pectoris and 1 or 2 de novo lesions (2.25-3.00 mm in diameter) in native coronary arteries. INTERVENTION: Patients were randomly assigned in a 1:1 ratio to receive a sirolimus-eluting stent (n = 701) or a paclitaxel-eluting stent (n = 685). MAIN OUTCOME MEASURES: The primary end point was in-lesion binary restenosis (presence of a more than 50% luminal-diameter stenosis) at 8 months. Secondary end points included 1-year rates of target lesion and vessel revascularization and a composite end point of cardiac death, Q-wave or non-Q-wave myocardial infarction, coronary artery bypass graft surgery, or repeat target lesion revascularization. RESULTS: In-lesion binary restenosis at 8 months occurred in 86 patients (9.6%) with a sirolimus-eluting stent vs 95 (11.1%) with a paclitaxel-eluting stent (relative risk [RR], 0.84; 95% confidence interval [CI], 0.61-1.17; P = .31). For sirolimus- vs paclitaxel-eluting stents, respectively, the mean (SD) in-stent late loss was 0.09 (0.43) mm vs 0.31 (0.44) mm (difference, -0.22 mm; 95% CI, -0.26 to -0.18 mm; P<.001), mean (SD) in-stent diameter stenosis was 23.1% (16.6%) vs 26.7% (15.8%) (difference, -3.60%; 95% CI, -5.12% to -2.08%; P<.001), and the number of major adverse cardiac events at 1 year was 73 (10.7%) vs 76 (11.4%) (RR, 0.94; 95% CI, 0.69-1.27; P = .73). CONCLUSION: In this trial comparing sirolimus- and paclitaxel-eluting coronary stents, there were no differences in the rates of binary restenosis or major adverse cardiac events. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00235092.
Resumo:
OBJECTIVES: Our purpose was to make a synthesis of the available evidence on the relative efficacy and safety of 2 drug-eluting stents (DES)--sirolimus-eluting stent (SES) and paclitaxel-eluting stent (PES)--in patients with coronary artery disease. BACKGROUND: It is not known whether there are differences in late outcomes between the 2 most commonly used DES: SES and PES. METHODS: Sixteen randomized trials of SES versus PES with a total number of 8,695 patients were included in this meta-analysis. A full set of individual outcome data from 5,562 patients was also available. Mean follow-up period ranged from 9 to 37 months. The primary efficacy end point was the need for reintervention (target lesion revascularization). The primary safety end point was stent thrombosis. Secondary end points were death and recurrent myocardial infarction (MI). RESULTS: No significant heterogeneity was found across trials. Compared with PES, SES significantly reduced the risk of reintervention (hazard ratio [HR] 0.74; 95% confidence interval [CI] 0.63 to 0.87, p < 0.001) and stent thrombosis (HR 0.66; 95% CI 0.46 to 0.94, p = 0.02) without significantly impacting on the risk of death (HR 0.92; 95% CI 0.74 to 1.13, p = 0.43) or MI (HR 0.84; 95% CI 0.69 to 1.03, p = 0.10). CONCLUSIONS: Sirolimus-eluting stents are superior to PES in terms of a significant reduction of the risk of reintervention and stent thrombosis. The risk of death was not significantly different between the 2 DES, but there was a trend toward a higher risk of MI with PES, especially after the first year from the procedure.