994 resultados para optimum temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of beta-fructofuranosidases by Aspergillus niveus, cultivated under submerged fermentation using agroindustrial residues, was investigated. The highest productivity of beta-fructofuranosidases was obtained in Khanna medium supplemented with sugar cane bagasse as carbon source. Glucose enhanced the production of the intracellular enzyme, whereas that of the extracellular one was decreased. The intracellular beta-fructofuranosidase was a trimeric protein of approximately 141 kDa (gel filtration) with 53.5% carbohydrate content, composed of 57 kDa monomers (SDS-PAGE). The optimum temperature and optimum pH were 60 degrees C and 4.5, respectively. The purified enzyme showed good thermal stability and exhibited a half-life of 53 min at 60 degrees C. beta-Fructofuranosidase activity was slightly activated by Cu(2+), Mn(2+), Mg(2+), and Na(+) at 1 mM concentration. The enzyme hydrolyzed sucrose, raffinose, and inulin, with K(d) values of 5.78 mM, 5.74 mM, and 1.74 mM, respectively. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of xylanolytic enzymes produced by Aspergillus fumigatus RP04 and Aspergillus niveus RP05 to promote the biobleaching of cellulose pulp was investigated. Both fungi grew for 4-5 days in liquid medium at 40A degrees C, under static conditions. Xylanase production was tested using different carbon sources, including some types of xylans. A. fumigatus produced high levels of xylanase on agricultural residues (corncob or wheat bran), whereas A. niveus produced more xylanase on birchwood xylan. The optimum temperature of the xylanases from A. fumigatus and A. niveus was around 60-70A degrees C. The enzymes were stable for 30 min at 60A degrees C, maintaining 95-98% of the initial activity. After 1 h at this temperature, the xylanase from A. niveus still retained 85% of initial activity, while the xylanase from A. fumigatus was only 40% active. The pH optimum of the xylanases was acidic (4.5-5.5). The pH stability for the xylanase from A. fumigatus was higher at pH 6.0-8.0, while the enzyme from A. niveus was more stable at pH 4.5-6.5. Crude enzymatic extracts were used to clarify cellulose pulp and the best result was obtained with the A. niveus preparation, showing kappa efficiency around 39.6% as compared to only 11.7% for that of A. fumigatus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 degrees C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 degrees C and 50-55 degrees C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 degrees C, which is close to the rumen temperature. The enzymes were stable in pH 4.0-7.0. Cu(++) and Mn(++) increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influences of temperature, time, and moisture on the germination of macroconidia and secondary conidia of Australian isolates of Claviceps africana were studied in vitro. The optimum temperature for germination of both macroconidia and secondary conidia of C. africana was 20degreesC. Although germination of macroconidia ceased near 31degreesC, approximately 30% of secondary conidia germinated at 37degreesC after 48 and 72 h of incubation. Sorghum flower extract agar stimulated macroconidium and secondary conidium germination, irrespective of temperature. Germination of macroconidia and secondary conidia on water agar started after 4 h of incubation at 20degreesC, reaching a maximum after 16-24 h and 14 h, respectively. Maximum germination of both macroconidia and secondary conidia was at greater than or equal to-5 bars at 20degreesC. Germination of secondary conidia ceased at -35 bars, whereas macroconidia germinated at water potentials as low as -55 bars at 20degreesC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The immobilized glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor was used to convert D-glucose into D-glucosone at moderate pressures, up to 150 bar, with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, different forms of immobilized biocatalysts, glucose concentration, pH, temperature and the presence of catalase. Glucose 2-oxidase (GOX2) was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. Purified enzyme and catalase were immobilized into a polyethersulfone (PES) membrane in the presence of glutaraldehyde and gelatin. Enhancement of the bioconversion of D-glucose was done by the pressure since an increase in the pressure with compressed air increases the conversion rates. The optimum temperature and pH for bioconversion of D-glucose were found to be 62 degrees C and pH 6.0, respectively and the activation energy (E(a)) was 28.01 kJ mol(-1). The apparent kinetic constants (V(max)' K(m)', K(cat)' and K(cat)/K(m)') for this bioconversion were 2.27 U mg(-1) protein, 11.15 mM, 8.33 s(-1) and 747.38 s(-1) M(-1), respectively. The immobilized biomass of C. versicolor as well as crude extract containing GOX2 activity were also useful for bioconversion of D-glucose at 65 bar with a yield of 69.9 +/- 3.8% and 91.3 +/- 1.2%, respectively. The immobilized enzyme was apparently stable for several months without any significant loss of enzyme activity. On the other hand, this immobilized enzyme was also stable at moderate pressures, since such pressures did not affect significantly the enzyme activity. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os polifenóis constituem um grupo biologicamente relevante de compostos naturais, que têm gerado um crescente interesse por parte dos consumidores e das indústrias alimentar, farmacêutica e de cosméticos. Os compostos fenólicos exibem uma vasta gama de propriedades fisiológicas, tais como anti-alérgica, anti-aterogénica, anti-inflamatória, anti-microbiana, antioxidante, anti-trombótica, possuindo efeitos cardio-protetores e vasodilatadores. Por conseguinte, o interesse na obtenção deste compostos ativos de uma forma fácil, barata e rápida tem vindo a aumentar. Uma das fontes de polifenóis são os subprodutos agrícolas, tais como os produtos derivados do vinho e/ou processamento de uvas. As folhas, os caules e os resíduos obtidos durante o processo de produção do vinho têm sido subutilizados, apesar de representarem uma boa fonte de compostos antioxidantes e bioativos. Portugal é um dos mais importantes países produtores de vinho, onde todos os anos são geradas várias toneladas de subprodutos associados a esta indústria. A extração, caracterização, quantificação e avaliação da atividade antioxidante de compostos bioativos extraídos destes subprodutos são, pois, tarefas importantes a fim de avaliar o potencial de utilização destes produtos como novas fontes de compostos antioxidantes. O objetivo deste trabalho foi quantificar e avaliar os teores de polifenóis de extratos preparados a partir de folhas e caules de videira, e bagaço, engaço e grainha de uva. Os parâmetros experimentais da extração foram otimizados, incluindo a proporção de solvente de extração (água/etanol), a temperatura e o tempo de extração. A quantificação dos polifenóis (como fenóis totais e flavonoides) foi efetuada por espetrofotometria de UV/Vis. Verificou-se que a melhor razão de solventes extratores foi de 50/50 (v/v) em água/etanol para todos os subprodutos estudados. No caso dos subprodutos folhas e caules, as condições ideais de extração foram obtidas quando se usou uma temperatura de 40ºC e um tempo de extração de 30 min. Para o bagaço, a temperatura ideal foi de 55ºC durante 5 min. Para o engaço e grainha a utilização de uma temperatura de 40ºC durante 5 min e 30 min, respetivamente, revelou-se o ideal para se obter os compostos. Com este trabalho conclui-se que os subprodutos da vinha e do vinho efetivamente possuem compostos de elevado valor e com capacidade antioxidante.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho tem como principal objectivo o estudo da possibilidade de recuperação de calor de um efluente proveniente do tratamento primário da fábrica do grupo Portucel Soporcel (fábrica produtora de pasta de papel), para o aquecimento da corrente de lamas do digestor anaeróbio da SimRia S.A. – ETAR Norte, (ambas localizadas em Cacia, distrito de Aveiro). A solução consiste na implementação de um sistema de permuta térmica entre estas duas correntes, constituído fundamentalmente por dois permutadores de placas em espiral, montados em paralelo que operam em contra-corrente. Segundo este novo sistema de aquecimento, as lamas abandonam o digestor anaeróbio da mesma ETAR a um caudal de 110 m3/h, que se dividirá em duas linhas, sendo admitidas em cada permutador a 55 m3/h e a uma temperatura de 32 ºC regressando ao digestor a uma temperatura de 37 ºC (temperatura óptima a que ocorre a digestão anaeróbia das lamas). O efluente disponível, abandona o tratamento primário da Portucel, a 45 ºC e é encaminhado até aos permutadores da SimRia S.A., onde vai trocar calor com as lamas e regressa à Portucel a 40ºC, sendo admitido nas torres de arrefecimento da fábrica de papel. A nova instalação proposta pretende substituir a actual existente na ETAR em causa, em que a corrente de água que aquece as lamas, circula num circuito fechado entre um único permutador e uma caldeira, alimentada com o biogás que se produz no digestor anaeróbio, e que é responsável pelo controlo da temperatura da corrente de água. Pretende-se que a implementação deste novo método de aquecimento de lamas seja uma alternativa económica relativamente ao actual sistema, uma vez que vai substituir a corrente de biogás alimentada à caldeira podendo este recurso ser transformado em energia eléctrica e posteriormente comercializada. A análise financeira realizada ao projecto demonstrou que o projecto é rentável, uma vez que, a diferença entre todos ganhos e custos ao fim dos 10 anos de vida útil estimados é de cerca de 150 000,0 €. O período de retorno do investimento é alcançado no final dos primeiros 6 anos e a taxa interna de rentabilidade obtida foi de 36 %. Posteriormente incluiu-se neste estudo a possibilidade de tratamento das lamas geradas na fábrica da Portucel na ETAR da SimRia recorrendo a um terceiro digestor. Conclui-se que se trata duma opção vantajosa, uma vez que permite obter um caudal de biogás 44 m3/h, que convertido em potência permite obter 150 kW que poderá ser aproveitado para produção de energia ou comercializado gerando uma receita adicional de 130 000,0 €/ano para as entidades envolvidas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the constant need to improve and make the production of asphalt mixtures more sustainable, new production techniques have been developed, the implementation of which implies the correct knowledge of their performance. One of the most promising asphalt production techniques is the use of foamed bitumen. However, it is essential to understand how this binder will behave when subject to the expansion process. The loss of volume of the foamed bitumen could be translated by a decay curve, which allows to determine the ideal temperature and water content added to the bitumen in order to assure adequate conditions to the mix the bitumen with the aggregates. On the present study, a conventional 160/220 pen grade bitumen was tested by using different temperatures and water contents, and it was concluded that the optimum temperature for the production of foamed bitumen (with the studied bitumen) is 150 ºC, which corresponds to a viscosity of 0.1 Pa.s. The water content mostly influence the half-life of the bitumen foam, resulting in quicker volume reductions for higher water contents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ß-lactamase activity was studied in Neisseria gonorrhoeae strains. Optimum temperature was found to be 37°C. The enzyme was inactivated at temperatures higher than 60°C, but remained active during storage at low temperatures (4°C, -30°C and -70°C) for two months. Enzyme activity was observed within a pH range of 5.8-8.0, while the optimum pH was 7.0-7.2. Addition of Ni2+, Fe2+, Fe3+, Mn2+ and p-chloromercurybenzoate to the reaction buffer exerted a negative effect upon the activity, whereas Hg2+ and ethylene diamine tetra-acetic acid produced complete inhibition. These results would indicate the presence of -SH groups at the catalytic site of the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streptomyces alboniger ATCC 12461 grown in brain heart infusion (BHI) medium produced two extracellular serine-proteinases, denoted SP I and SP II, which were purified by ammonium sulfate precipitation and aprotinin-agarose affinity chromatography. SP I was purified 88,9-fold and SP II 66,7- fold, with 33.4% and 10.4% yield, respectively. The optimum pH for the proteinases activity, using a-N-p-tosyl-L-arginine-methyl ester (TAME) as substrate, was 9-10 and the optimum temperature was 37ºC. The proteolytic activity of SP I and SP II was inhibited by aprotinin and SP I was partially inhibited by leupeptin, both serine-proteinase inhibitors. S. alboniger growth in BHI-liquid medium decreased when 5 mg/ml, 10 mg/ml of aprotinin was used, being completely inhibited with 20 mg/ml and 40 mg/ml. At the ultrastructural level, aprotinin-treated S. alboniger cells showed swelling of the bacterial body and condensation of the genetic material, probably related to the inhibition of its growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, equilibrium and dynamic sorption properties of weakly basic chelating adsorbents were studied to explain removal of copper, nickel from a concentrated zinc sulfate solution in a hydrometallurgical process. Silica-supported chelating composites containing either branched poly(ethyleneimine) (BPEI) or 2-(aminomethyl)pyridine (AMP) as a functional group were used. The adsorbents are commercially available from Purity Systems Inc, USA as WP-1® and CuWRAM®, respectively. The fundamental interactions between the adsorbents, sulfuric acid and metal sulfates were studied in detail and the results were used to find the best conditions for removal of copper and nickel from an authentic ZnSO4 process solution. In particular, the effect of acid concentration and temperature on the separation efficiency was considered. Both experimental and modeling aspectswere covered in all cases. Metal sorption is considerably affected by the chemical properties of the studied adsorbents and by the separation conditions. In the case of WP-1, acid affinity is so high that column separation of copper, nickel and zinc has to be done using the adsorbent in base-form. On the other hand, the basicity of CuWRAM is significantly lower and protonated adsorbent can be used. Increasing temperature decreases the basicity and the metals affinity of both adsorbents, but the uptake capacities remain practically unchanged. Moreover, increasing temperature substantially enhances intra-particle mass transport and decreases viscosities thus allowing significantly higher feed flow rates in the fixed-bed separation. The copper selectivity of both adsorbents is very high even in the presence of a 250-fold excess of zinc. However, because of the basicity of WP-1, metal precipitation is a serious problem and therefore only CuWRAM is suitable for the practical industrial application. The optimum temperature for copper removal appears to be around 60 oC and an alternative solution purification method is proposed. The Ni/Zn selectivity of both WP-1 and CuWRAM is insufficient for removal of the very small amounts of nickel present in the concentrated ZnSO4 solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipase from Thermomyces lanuginosus was covalently immobilized on activated poly-hydroxybutyrate, sugarcane bagasse and the chemically modified hybrid hydrogel chitosan-alginate prepared by different strategies. Among the tested supports, chitosan-alginate chemically modified with 2,4,6-trinitrobenzenesulfonic acid rendered derivatives with the highest hydrolytic activity and thermal-stability, 45-fold more stable than soluble lipase and was then selected for further studies. The pH of maximum activity was similar for both immobilized and free lipase (pH 8.0) while optimum temperature was 5 - 10 ºC higher for the immobilized lipase. Higher yields in the butyl butyrate synthesis were found for the derivatives prepared by activation with glycidol and epichlorohydrin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of chemicals from sawdust by wet oxidation has been investigated. Two different concentrations of sawdust; 54054 mg/l and 32683 mg/l were used in the study. The wet oxidation operating conditions were; 175 deg.C – 225 deg.C, 1MPa Oxygen, and 40 minutes to 120 minutes reaction time. Carboxylic acids were among the chemicals produced in the process. The total yield of carboxylic acids was found to increase with temperature. Also, higher yields of carboxylic acids were observed at a lower sawdust concentration. This was probably due to the high oxygen-biomass ratio at lower sawdust concentration. Higher oxygen availability at low sawdust concentration resulted in increased conversion of the sawdust; hence the higher yields of carboxylic acids. At lower sawdust concentration, a total carboxylic acid yield of 25.59 wt% was attained at 200 deg.C and 40 minutes reaction time. At higher sawdust concentration, a total carboxylic acid yield of 15.57 wt% was attained at 200 deg.C and 40-minutes reaction time. The carboxylic acids identified include formic acid, acetic acid, succinic acid and oxalic acid. The optimum temperature for the production of formic acid was found to be 200 deg.C, while the optimum temperature for the production of acetic acid was found to be 225 deg.C. A temperature of 225 deg.C and relatively short reaction time of 10 minutes was found to be the optimal condition for the production of succinic acid. Formic acid was produced in the highest yield, with an optimal yield of 13.69wt %, when the reaction temperature and time are 200 deg.C and 40 minutes respectively. The yield of formic acid was found to decrease significantly when further increasing the temperature to 225 deg.C. This was presumably due to thermal decomposition of formic acid at relatively higher temperature. However, the yield of acetic acid was found to steadily increase with temperature. This is because acetic is more thermally stable than formic acid. The yield of acetic acid did not decrease after the temperature was increased to 225 deg.C. Optimal yield of acetic acid (7.98wt %) was achieved at; 225 deg.C, and 40 minutes reaction time. Succinic acid was produced only at temperatures of 200 deg.C and 225 deg.C. Optimal yield of succinic acid (5.66wt %) was attained under the following conditions; 32683 mg/l, 225 deg.C, 1MPa O2, and 10-minutes reaction time. Oxalic acid was produced in the lowest yield and, less frequently. The optimal yield of oxalic acid (4.02 wt%) was attained at 175 deg.C and 80-minutes of reaction time The Total Organic Carbon (TOC) is found to be higher when increasing the operating temperature, thus suggesting that more organic compounds are formed at higher temperatures. The identified carboxylic acids could only account for less than 30% of the measured COD content of the various wet oxidation samples. This implies that some other unidentified compounds (reaction products) must have been present. In general, wet oxidation seems to be an effective method for converting lignocellulosic biomass into useful chemicals. Relatively higher temperatures have been found to favor the production of carboxylic acids from sawdust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lesser celandine (Ranunculaceae) is a perennial weed with tuberous root. Tubers are the most important means of reproduction and dispersion of this weed. In recent years, it has spread into wheat fields in Western Iran, mainly in the Lorestan province. A series of experiments were conducted to determine cardinal temperatures and to study the effects of pre-chilling, temperature fluctuations, tuber size, freezing and drying on germination of the tubers, as well as the effect of planting depth on sprouting of the tubers. The results obtained showed that the highest percentage of germination occurred when tubers were stored for more than 2 weeks at 4 or 8 ºC. The optimum temperature for germination differed in large and small tubers (8 and 14oC, respectively). Germination was the highest (almost 100%) at temperature fluctuations of 5-10oC. Germination of the finger-like and small tubers was the highest (95%); however, very small, small, and broken tubers showed the lowest germination percentage. In the freezing experiment, decreasing the temperature and increasing the storage duration decreased the germination of tubers. Increasing the osmotic potential and temperature resulted in decreased tuber germination of Lesser celandine. Lesser celandine could sprout down to 20 cm depth but heat demand for tubers from superficial depth was smaller than for tubers planted at greater depth.