918 resultados para one-to-one computing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This master’s thesis aims to study and represent from literature how evolutionary algorithms are used to solve different search and optimisation problems in the area of software engineering. Evolutionary algorithms are methods, which imitate the natural evolution process. An artificial evolution process evaluates fitness of each individual, which are solution candidates. The next population of candidate solutions is formed by using the good properties of the current population by applying different mutation and crossover operations. Different kinds of evolutionary algorithm applications related to software engineering were searched in the literature. Applications were classified and represented. Also the necessary basics about evolutionary algorithms were presented. It was concluded, that majority of evolutionary algorithm applications related to software engineering were about software design or testing. For example, there were applications about classifying software production data, project scheduling, static task scheduling related to parallel computing, allocating modules to subsystems, N-version programming, test data generation and generating an integration test order. Many applications were experimental testing rather than ready for real production use. There were also some Computer Aided Software Engineering tools based on evolutionary algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate projects funded in European 7th framework Information and Communication Technology- work programme. The research has been limited to issue ”Pervasive and trusted network and service infrastructure” and the aim is to find out which are the most important topics into which research will concentrate in the future. The thesis will provide important information for the Department of Information Technology in Lappeenranta University of Technology. First in this thesis will be investigated what are the requirements for the projects which were funded in “Pervasive and trusted network and service infrastructure” – programme 2007. Second the projects funded according to “Pervasive and trusted network and service infrastructure”-programme will be listed in to tables and the most important keywords will be gathered. Finally according to the keyword appearances the vision of the most important future topics will be defined. According to keyword-analysis the wireless networks are in important role in the future and core networks will be implemented with fiber technology to ensure fast data transfer. Software development favors Service Oriented Architecture (SOA) and open source solutions. The interoperability and ensuring the privacy are in key role in the future. 3D in all forms and content delivery are important topics as well. When all the projects were compared, the most important issue was discovered to be SOA which leads the way to cloud computing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing system? The work reported in this paper is motivated towards bridging this gap by proposing swarm-array computing, a novel technique to achieve autonomy for distributed parallel computing systems. Among three proposed approaches, the second approach, namely 'Intelligent Agents' is of focus in this paper. The task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier. agents and can be seamlessly transferred between cores in the event of a pre-dicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed approach is validated on a multi-agent simulator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work reported in this paper proposes 'Intelligent Agents', a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work reported in this paper proposes Swarm-Array computing, a novel technique inspired by swarm robotics, and built on the foundations of autonomic and parallel computing. The approach aims to apply autonomic computing constructs to parallel computing systems and in effect achieve the self-ware objectives that describe self-managing systems. The constitution of swarm-array computing comprising four constituents, namely the computing system, the problem/task, the swarm and the landscape is considered. Approaches that bind these constituents together are proposed. Space applications employing FPGAs are identified as a potential area for applying swarm-array computing for building reliable systems. The feasibility of a proposed approach is validated on the SeSAm multi-agent simulator and landscapes are generated using the MATLAB toolkit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work reported in this paper proposes ‘Intelligent Agents’, a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two studies among college students were conducted to evaluate appropriate measurement methods for etiological research on computing-related upper extremity musculoskeletal disorders (UEMSDs). ^ A cross-sectional study among 100 graduate students evaluated the utility of symptoms surveys (a VAS scale and 5-point Likert scale) compared with two UEMSD clinical classification systems (Gerr and Moore protocols). The two symptom measures were highly concordant (Lin's rho = 0.54; Spearman's r = 0.72); the two clinical protocols were moderately concordant (Cohen's kappa = 0.50). Sensitivity and specificity, endorsed by Youden's J statistic, did not reveal much agreement between the symptoms surveys and clinical examinations. It cannot be concluded self-report symptoms surveys can be used as surrogate for clinical examinations. ^ A pilot repeated measures study conducted among 30 undergraduate students evaluated computing exposure measurement methods. Key findings are: temporal variations in symptoms, the odds of experiencing symptoms increased with every hour of computer use (adjOR = 1.1, p < .10) and every stretch break taken (adjOR = 1.3, p < .10). When measuring posture using the Computer Use Checklist, a positive association with symptoms was observed (adjOR = 1.3, p < 0.10), while measuring posture using a modified Rapid Upper Limb Assessment produced unexpected and inconsistent associations. The findings were inconclusive in identifying an appropriate posture assessment or superior conceptualization of computer use exposure. ^ A cross-sectional study of 166 graduate students evaluated the comparability of graduate students to College Computing & Health surveys administered to undergraduate students. Fifty-five percent reported computing-related pain and functional limitations. Years of computer use in graduate school and number of years in school where weekly computer use was ≥ 10 hours were associated with pain within an hour of computing in logistic regression analyses. The findings are consistent with current literature on both undergraduate and graduate students. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Individuals and corporate users are persistently considering cloud adoption due to its significant benefits compared to traditional computing environments. The data and applications in the cloud are stored in an environment that is separated, managed and maintained externally to the organisation. Therefore, it is essential for cloud providers to demonstrate and implement adequate security practices to protect the data and processes put under their stewardship. Security transparency in the cloud is likely to become the core theme that underpins the systematic disclosure of security designs and practices that enhance customer confidence in using cloud service and deployment models. In this paper, we present a framework that enables a detailed analysis of security transparency for cloud based systems. In particular, we consider security transparency from three different levels of abstraction, i.e., conceptual, organisation and technical levels, and identify the relevant concepts within these levels. This allows us to provide an elaboration of the essential concepts at the core of transparency and analyse the means for implementing them from a technical perspective. Finally, an example from a real world migration context is given to provide a solid discussion on the applicability of the proposed framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.