917 resultados para non-destructive reconstruction
Resumo:
Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter 4 m, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties. © 2011 American Institute of Physics.
Resumo:
This work is concerned with the structural behaviour and the integrity of parallel plate-type nuclear fuel assemblies. A plate-type assembly consists of several thin plates mounted in a box-like structure and is subjected to a coolant flow that can result in a considerable drag force. A finite element model of an assembly is presented to study the sensitivity of the natural frequencies to the stiffness of the plates' junctions. It is shown that the shift in the natural frequencies of the torsional modes can be used to check the global integrity of the fuel assembly while the local natural frequencies of the inner plates can be used to estimate the maximum drag force they can resist. Finally a non-destructive method is developed to assess the resistance of the inner plates to bear an applied load. Extensive computational and experimental results are presented to prove the applicability of the method presented. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The dithiophene donor-acceptor copolymers that are bridged either with carbon (C-PCPDTBT) or silicon atoms (Si-PCPDTBT) belong to a promising family of materials for use in photoactive layers for organic photovoltaic cells (OPVs). In this work, we implement the non-destructive Spectroscopic Ellipsometry technique in the near infrared to the far ultraviolet spectral region in combination with advanced theoretical modeling to investigate the vertical distribution of the C-PCPDTBT and Si-PCPDTBT polymer and fullerene ([6,6]-phenyl C71-butyric acid methyl ester - PC70BM) phases in the blend, as well as the effect of the polymer-to-fullerene ratio on the distribution mechanism. It was found that the C-PCPDTBT:PC70BM blends have donor-enriched top regions and acceptor-enriched bottom regions, whereas the donor and acceptor phases are more homogeneously intermixed in the Si-PCPDTBT:PC70BM blends. We suggest that the chemical incompatibility of the two phases as expressed by the difference in their surface energy, may be a key element in promoting the segregation of the lower surface phase to the top region of the photoactive layer. We found that the increase of the photoactive layer thickness reduces the polymer enrichment at the cathode, producing a more homogeneous phase distribution of donor and acceptor in the bulk that leads to the increase of the OPV efficiency. © 2014 Elsevier B.V.
Resumo:
Nankai University
Resumo:
This article examines some preliminary tests which were performed in order to evaluate the best electrode configuration (width and spacing) for cell culture analyses. Biochips packaged with indium tin oxide (ITO) interdigitated electrodes (IDEs) were used to perform impedance measurements on A549 cells cultured on the surface of the biochip. Several tests were carried out using a 10 mM solution of Sodium Chloride (NaCl), cell medium and the cell culture itself to characterize some of the configurations already fabricated in the facilities at Tyndall National Institute.
Resumo:
The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.
Resumo:
This paper concerns the use of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste and specifically, the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of paste materials at the molecular level. Ultrasonic techniques are a widely used and a reliable form of non-destructive testing of materials. This is because techniques such as ultrasounds while used for testing or monitoring material properties, has offered immense benefits in applications where access to the sample is restricted or when handling the sample for testing could interfere with the monitoring or analysis process. Very often, this would mean that the measurements taken are not a true representation of the behaviour of the material (due to externally incorporated changes into the material's physical state during the removal or testing process). Ultrasonic based techniques are being increasingly used for quality control and production monitoring functions which requires evaluation of the changes in material properties over wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough, and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capacity to take rapid measurements in systems which are optically opaque. The viscometer and rheometer are two of the most widely used rheological instruments used in industry for monitoring the quality of solder pastes, during the production and packaging stage. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. It is for these reasons that materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers) are keen to see the development of simple, easy to use and accurate techniques for the theological characterisation of solder pastes. The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
This paper investigates the application of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste through the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of lead-free solder paste containing different types of flux. Ultrasonic techniques offer a robust and reliable form of non-destructive testing of materials where access to the sample is restricted or when sample handling can interfere with the monitoring or analysis process due to externally incorporated changes to the material’s physical state or accidental contamination during the removal or testing process. Ultrasonic based techniques are increasingly used for quality control and production monitoring functions which requires evaluation of changes in material properties for a wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capability to take rapid measurements in systems which are optically opaque. The conventional industry approach for characterising the rheological properties of suspensions during processing/packaging stage is mainly through the use of viscometer and some through the use of rheometer. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. The ultrasound technique being proposed provides simple, yet accurate and easy to use solution for the in-situ rheological characterisation of solder pastes which will benefit the materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers). The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
The split cylinder resonator method is improved for nondestructive and accurate measurement for low permittivity materials at multiple frequency points. The dielectric constants of flat substrate materials are calculated based on a rigorous mode match analysis of the TE/sub 011/ mode. The loss tangent is also approximately calculated. The dielectric properties of two commercial substrates have been measured at multiple frequencies. The results demonstrate that this technology is capable of accurately characterizing the dielectric properties of flat substrate materials versus frequency in a nondestructive way.
Resumo:
A quasi-classical model (QCM) of nuclear wavepacket generation, modification and imaging by three intense ultrafast near-infrared laser pulses has been developed. Intensities in excess of 10(13) W cm(-2) are studied, the laser radiation is non-resonant and pulse durations are in the few-cycle regime, hence significantly removed from the conditions typical of coherent control and femtochemistry. The 1s sigma ground state of the D-2 precursor is projected onto the available electronic states in D-2(+) (1s sigma(g) ground and 2p sigma(u) dissociative) and D+ + D+ (Coulomb explosion) by tunnel ionization by an ultrashort 'pump' pulse, and relative populations are found numerically. A generalized non-adiabatic treatment allows the dependence of the initial vibrational population distribution on laser intensity to be calculated. The wavepacket is approximated as a classical ensemble of particles moving on the 1s sigma(g) potential energy surface (PES), and hence follow trajectories of different amplitudes and frequencies depending on the initial vibrational state. The 'control' pulse introduces a time-dependent polarization of the molecular orbital, causing the PES to be modified according to the dynamic Stark effect and the transition dipole. The trajectories adjust in amplitude, frequency and phase-offset as work is done on or by the resulting force; comparing the perturbed and unperturbed trajectories allows the final vibrational state populations and phases to be determined. The action of the 'probe' pulse is represented by a discrete internuclear boundary, such that elements of the ensemble at a larger internuclear separation are assumed to be photodissociated. The vibrational populations predicted by the QCM are compared to recent quantum simulations (Niederhausen and Thumm 2008 Phys. Rev. A 77 013404), and a remarkable agreement has been found. The applicability of this model to femtosecond and attosecond time-scale experiments is discussed and the relation to established femtochemistry and coherent control techniques are explored.