943 resultados para myocardial ischemia
Resumo:
Intracoronary administration of glycosaminoglycan analogs, including the complement inhibitor dextran sulfate, attenuates myocardial ischemia/reperfusion injury (I/R injury). However, dextran sulfate has a distinct anticoagulatory effect, possibly limiting its use in specific situations in vivo. We therefore developed multimeric tyrosine sulfate (sTyr-PAA), a novel, minimally anticoagulatory, fully synthetic non-carbohydrate-containing polyacrylamide conjugate, for in vivo testing in an acute closed-chest porcine model of acute myocardial infarction.
Resumo:
Infarct size (IS) increases with vascular occlusion time, area at risk for infarction, lack of collateral supply, absence of preconditioning, and myocardial demand for O2 supply. ECG S-T segment elevation is used as a measure of severity of ischemia and a surrogate for IS. This study in 50 patients with coronary artery disease undergoing a first 120-s balloon occlusion of a stenosis sought to determine whether S-T segment elevation, corrected for the above-mentioned variables, in the left coronary artery (LCA group, n = 36) is different from that in the right coronary artery (RCA group, n = 14) territory. After consideration of all known determinants of IS, particularly mass at risk and collateral supply, the LCA territory is more sensitive than the RCA region to a 2-min period of myocardial ischemia.
Resumo:
This article reviews technical aspects and the current status of novel cardiovascular magnetic resonance (CMR) approaches to assessing myocardial perfusion, specifically oxygenation-sensitive magnetic resonance imaging, comparing their diagnostic targets and clinical role with those of other imaging approaches. The paper includes discussions of relevant pathophysiological aspects of myocardial ischemia and the clinical context of revascularization in patients with suspected or known coronary artery disease. Research using oxygenation-sensitive CMR may play an important role for a better understanding of the interplay of coronary artery stenosis, blood flow reduction, and their impact on actual myocardial ischemia.
Resumo:
Recent experimental evidence suggests that reactive nitrogen oxide species can contribute significantly to postischemic myocardial injury. The aim of the present study was to evaluate the role of two reactive nitrogen oxide species, nitroxyl (NO−) and nitric oxide (NO⋅), in myocardial ischemia and reperfusion injury. Rabbits were subjected to 45 min of regional myocardial ischemia followed by 180 min of reperfusion. Vehicle (0.9% NaCl), 1 μmol/kg S-nitrosoglutathione (GSNO) (an NO⋅ donor), or 3 μmol/kg Angeli’s salt (AS) (a source of NO−) were given i.v. 5 min before reperfusion. Treatment with GSNO markedly attenuated reperfusion injury, as evidenced by improved cardiac function, decreased plasma creatine kinase activity, reduced necrotic size, and decreased myocardial myeloperoxidase activity. In contrast, the administration of AS at a hemodynamically equieffective dose not only failed to attenuate but, rather, aggravated reperfusion injury, indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase release and necrotic size. Decomposed AS was without effect. Co-administration of AS with ferricyanide, a one-electron oxidant that converts NO− to NO⋅, completely blocked the injurious effects of AS and exerted significant cardioprotective effects similar to those of GSNO. These results demonstrate that, although NO⋅ is protective, NO− increases the tissue damage that occurs during ischemia/reperfusion and suggest that formation of nitroxyl may contribute to postischemic myocardial injury.
Resumo:
Previous studies have shown that proinflammatory cytokines, such as tumor necrosis factor (TNF), are expressed after acute hemodynamic overloading and myocardial ischemia/infarction. To define the role of TNF in the setting of ischemia/infarction, we performed a series of acute coronary artery occlusions in mice lacking one or both TNF receptors. Left ventricular infarct size was assessed at 24 h after acute coronary occlusion by triphenyltetrazolium chloride (TTC) staining in wild-type (both TNF receptors present) and mice lacking either the type 1 (TNFR1), type 2 (TNFR2), or both TNF receptors (TNFR1/TNFR2). Left ventricular infarct size as assessed by TTC staining was significantly greater (P < 0.005) in the TNFR1/TNFR2-deficient mice (77.2% ± 15.3%) when compared with either wild-type mice (46.8% ± 19.4%) or TNFR1-deficient (47.9% ± 10.6%) or TNFR2-deficient (41.6% ± 16.5%) mice. Examination of the extent of necrosis in wild-type and TNFR1/TNFR2-deficient mice by anti-myosin Ab staining demonstrated no significant difference between groups; however, the peak frequency and extent of apoptosis were accelerated in the TNFR1/TNFR2-deficient mice when compared with the wild-type mice. The increase in apoptosis in the TNFR1/TNFR2-deficient mice did not appear to be secondary to a selective up-regulation of the Fas ligand/receptor system in these mice. These data suggest that TNF signaling gives rise to one or more cytoprotective signals that prevent and/or delay the development of cardiac myocyte apoptosis after acute ischemic injury.
Resumo:
Purpose of review Heart failure and diabetes mellitus are frequently associated, and diabetes appears to potentiate the clinical presentation of heart failure related to other causes. The purpose of this review is to examine recent advances in the application of tissue Doppler imaging for the assessment of diabetic heart disease. Recent findings Recent studies have documented that both myocardial systolic and diastolic abnormalities can be identified in apparently healthy patients with diabetes and no overt cardiac dysfunction. Interestingly, these are disturbances of longitudinal function, with compensatory increases of radial function-suggesting primary involvement of the subendocardium, which is a hallmark of myocardial ischemia. Despite this, there is limited evidence that diabetic microangiopathy is responsible-with reduced myocardial blood volume rather than reduced resting flow, and at least some evidence suggesting a normal increment of tissue velocity with stress. Finally, a few correlative studies have shown association of diabetic myocardial disease with poor glycemic control, while angiotensin converting enzyme inhibition may be protective. Summary Tissue Doppler imaging (and the related technique of strain rate imaging) appears to be extremely effective for the identification of subclinical LV dysfunction in diabetic patients It is hoped that the recognition of this condition will prompt specific therapy to prevent the development of overt LV dysfunction.
Resumo:
Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.
Resumo:
Background Cardiovascular disease and mental health both hold enormous public health importance, both ranking highly in results of the recent Global Burden of Disease Study 2010 (GBD 2010). For the first time, the GBD 2010 has systematically and quantitatively assessed major depression as an independent risk factor for the development of ischemic heart disease (IHD) using comparative risk assessment methodology. Methods A pooled relative risk (RR) was calculated from studies identified through a systematic review with strict inclusion criteria designed to provide evidence of independent risk factor status. Accepted case definitions of depression include diagnosis by a clinician or by non-clinician raters adhering to Diagnostic and Statistical Manual of Mental Disorders (DSM) or International Classification of Diseases (ICD) classifications. We therefore refer to the exposure in this paper as major depression as opposed to the DSM-IV category of major depressive disorder (MDD). The population attributable fraction (PAF) was calculated using the pooled RR estimate. Attributable burden was calculated by multiplying the PAF by the underlying burden of IHD estimated as part of GBD 2010. Results The pooled relative risk of developing IHD in those with major depression was 1.56 (95% CI 1.30 to 1.87). Globally there were almost 4 million estimated IHD disability-adjusted life years (DALYs), which can be attributed to major depression in 2010; 3.5 million years of life lost and 250,000 years of life lived with a disability. These findings highlight a previously underestimated mortality component of the burden of major depression. As a proportion of overall IHD burden, 2.95% (95% CI 1.48 to 4.46%) of IHD DALYs were estimated to be attributable to MDD in 2010. Eastern Europe and North Africa/Middle East demonstrate the highest proportion with Asia Pacific, high income representing the lowest. Conclusions The present work comprises the most robust systematic review of its kind to date. The key finding that major depression may be responsible for approximately 3% of global IHD DALYs warrants assessment for depression in patients at high risk of developing IHD or at risk of a repeat IHD event.
Resumo:
Background Depressive disorders were a leading cause of burden in the Global Burden of Disease (GBD) 1990 and 2000 studies. Here, we analyze the burden of depressive disorders in GBD 2010 and present severity proportions, burden by country, region, age, sex, and year, as well as burden of depressive disorders as a risk factor for suicide and ischemic heart disease. Methods and Findings Burden was calculated for major depressive disorder (MDD) and dysthymia. A systematic review of epidemiological data was conducted. The data were pooled using a Bayesian meta-regression. Disability weights from population survey data quantified the severity of health loss from depressive disorders. These weights were used to calculate years lived with disability (YLDs) and disability adjusted life years (DALYs). Separate DALYs were estimated for suicide and ischemic heart disease attributable to depressive disorders.Depressive disorders were the second leading cause of YLDs in 2010. MDD accounted for 8.2% (5.9%-10.8%) of global YLDs and dysthymia for 1.4% (0.9%-2.0%). Depressive disorders were a leading cause of DALYs even though no mortality was attributed to them as the underlying cause. MDD accounted for 2.5% (1.9%-3.2%) of global DALYs and dysthymia for 0.5% (0.3%-0.6%). There was more regional variation in burden for MDD than for dysthymia; with higher estimates in females, and adults of working age. Whilst burden increased by 37.5% between 1990 and 2010, this was due to population growth and ageing. MDD explained 16 million suicide DALYs and almost 4 million ischemic heart disease DALYs. This attributable burden would increase the overall burden of depressive disorders from 3.0% (2.2%-3.8%) to 3.8% (3.0%-4.7%) of global DALYs. Conclusions GBD 2010 identified depressive disorders as a leading cause of burden. MDD was also a contributor of burden allocated to suicide and ischemic heart disease. These findings emphasize the importance of including depressive disorders as a public-health priority and implementing cost-effective interventions to reduce its burden.Please see later in the article for the Editors' Summary.
Resumo:
Background: Coronary tortuosity (CT) is a common coronary angiographic finding. Whether CT leads to an apparent reduction in coronary pressure distal to the tortuous segment of the coronary artery is still unknown. The purpose of this study is to determine the impact of CT on coronary pressure distribution by numerical simulation. Methods: 21 idealized models were created to investigate the influence of coronary tortuosity angle (CTA) and coronary tortuosity number (CTN) on coronary pressure distribution. A 2D incompressible Newtonian flow was assumed and the computational simulation was performed using finite volume method. CTA of 30°, 60°, 90°, 120° and CTN of 0, 1, 2, 3, 4, 5 were discussed under both steady and pulsatile conditions, and the changes of outlet pressure and inlet velocity during the cardiac cycle were considered. Results: Coronary pressure distribution was affected both by CTA and CTN. We found that the pressure drop between the start and the end of the CT segment decreased with CTA, and the length of the CT segment also declined with CTA. An increase in CTN resulted in an increase in the pressure drop. Conclusions: Compared to no-CT, CT can results in more decrease of coronary blood pressure in dependence on the severity of tortuosity and severe CT may cause myocardial ischemia.
Resumo:
Thrombin is a multifunctional protease, which has a central role in the development and progression of coronary atherosclerotic lesions and it is a possible mediator of myocardial ischemia-reperfusion injury. Its generation and procoagulant activity are greatly upregulated during cardiopulmonary bypass (CPB). On the other hand, activated protein C, a physiologic anticoagulant that is activated by thrombomodulin-bound thrombin, has been beneficial in various models of ischemia-reperfusion. Therefore, our aim in this study was to test whether thrombin generation or protein C activation during coronary artery bypass grafting (CABG) associate with postoperative myocardial damage or hemodynamic changes. To further investigate the regulation of thrombin during CABG, we tested whether preoperative thrombophilic factors associate with increased CPB-related generation of thrombin or its procoagulant activity. We also measured the anticoagulant effects of heparin during CPB with a novel coagulation test, prothrombinase-induced clotting time (PiCT), and compared the performance of this test with the present standard of laboratory-based anticoagulation monitoring. One hundred patients undergoing elective on-pump CABG were studied prospectively. A progressive increase in markers of thrombin generation (F1+2), fibrinolysis (D-dimer), and fibrin formation (soluble fibrin monomer complexes) was observed during CPB, which was further distinctly propagated by reperfusion after myocardial ischemia, and continued to peak after the neutralization of heparin with protamine. Thrombin generation during reperfusion after CABG associated with postoperative myocardial damage and increased pulmonary vascular resistance. Activated protein C levels increased only slightly during CPB before the release of the aortic clamp, but reperfusion and more significantly heparin neutralization caused a massive increase in activated protein C levels. Protein C activation was clearly delayed in relation to both thrombin generation and fibrin formation. Even though activated protein C associated dynamically with postoperative hemodynamic performance, it did not associate with postoperative myocardial damage. Preoperative thrombophilic variables did not associate with perioperative thrombin generation or its procoagulant activity. Therefore, our results do not favor routine thrombophilia screening before CABG. There was poor agreement between PiCT and other measurements of heparin effects in the setting of CPB. However, lower heparin levels during CPB associated with inferior thrombin control and high heparin levels during CPB associated with fewer perioperative transfusions of blood products. Overall, our results suggest that hypercoagulation after CABG, especially during reperfusion, might be clinically important.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
O Câncer de mama (CM) é hoje o tipo de câncer mais incidente entre as mulheres, com a estimativa de 53 mil novos casos para o ano de 2013, segundo o Instituto Nacional do Câncer (INCA). É considerada uma doença de bom prognóstico, principalmente quando diagnosticada na sua fase mais precoce. A evolução no diagnóstico, e nas técnicas de tratamento para o CM, que incluem a quimioterapia e/ou radioterapia, aumentaram a expectativa de sobrevida para este tipo de câncer. Uma das complicações tardias induzidas pelo tratamento desta doença é a cardiotoxicidade. O termo cardiotoxicidade abrange uma série de efeitos colaterais, que incluem arritmias, alterações na pressão arterial, isquemia do miocárdio, trombose ou insuficiência cardíaca. É, por isso, fundamental entender os mecanismos envolvidos no desenvolvimento da toxicidade cardíaca para o sucesso do tratamento dos pacientes com CM. Este trabalho teve como objetivo avaliar os efeitos cardíacos tardios induzidos pela irradiação e quimioterapia, simulando um tratamento para o CM, em ratas Wistar. Ratas Wistar, com aproximadamente 3 meses de idade, foram divididas em: grupo controle, grupo que recebeu quimioterapia + irradiação (TC+IR), e grupo que recebeu apenas irradiação (IR). A quimioterapia foi administrada em 4 ciclos, com intervalo de 1 semana entre eles. A irradiação na região do coração foi realizada em dose única, de 20Gy, em um campo de 2x2 cm2. Os ratos foram submetidos à eutanásia 5 meses após o término dos tratamentos, para que os efeitos tardios pudessem ser avaliados. Vários estudos foram conduzidos: ecocardiografia para observar as alterações funcionais do coração; PCR em tempo real para detectar alterações no nível mRNA de procolágeno tipo I, TGF-β1, angiotensinogênio, renina, ECA, AT1, VEGF e razão Bax/;bcl2, no tecido do ventrículo esquerdo (VE); Além de ensaios histológicos para avaliar o aspecto do tecido cardíaco do VE. Resultados e discussão Os resultados obtidos indicam um processo de remodelamento cardíaco após os tratamentos para o CM. Sugere-se que este remodelamento inicie-se com a diminuição de vasos no VE, causada pelos tratamentos, conforme os resultados da estereologia e do PCR para VEGF. Em seguida mostrou-se hipertrofia dos cardiomiócitos, o aumento da expressão de procolágeno e TGF-β1 e de tecido conjuntivo neste tecido. E associado a estes resultados, mostrou-se a participação dos sistema renina angiotensina cardíaco neste processo de remodelamento. Porém, apesar de todas estas alterações terem ocorrido em ambos os grupos tratados, apenas o grupo que recebeu irradiação e quimioterapia concomitantemente apresentou alteração da função cardíaca, na ecocardiografia. Sugere-se, desta forma, que a associação destas terapias seja mais lesiva ao coração, do que a irradiação aplicada exclusivamente. Conclusão Os objetivos do trabalho foram alcançados, e pode-se entender melhor as vias envolvidas na cardiotoxicidade. Este é um estudo inédito, o assunto abordado é recente, e de sumo importância para o desenvolvimento de novas estratégias de tratamento para o CM, onde sejam consideradas as complicações cardíacas tardias envolvidas.
Resumo:
BACKGROUND/AIMS: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of adrenomedullin (AM) and intermedin (IMD) and their receptor activity modifying proteins (RAMPs 1-3) is augmented in cardiomyocytes, indicating that the myocardial AM/ IMD system may be activated in response to pressure loading and ischemic insult. The aim was to examine effects on (i) parameters of cardiomyocyte hypertrophy and on (ii) expression of AM and IMD and their receptor components in NO-deficient cardiomyocytes of an intervention chosen specifically for ability to alleviate pressure loading and ischemic injury concurrently. METHODS: The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1)) was given to rats for 8 weeks, with/ without concurrent administration of beta-adrenoceptor antagonist, atenolol (25 mg.kg(-1).day(-1)) / calcium channel blocker, nifedipine (20mg.kg(-1).day(-1)). RESULTS: In L-NAME treated rats, atenolol / nifedipine abolished increases in systolic blood pressure and plasma AM and IMD levels and in left ventricular cardiomyocytes: (i) normalized increased cell width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP, BNP, ET) genes; (ii) normalized augmented membrane protein oxidation; (iii) normalized mRNA expression of AM, IMD, RAMP1, RAMP2 and RAMP3. CONCLUSIONS: normalization of blood pressure and membrane oxidant status together with prevention of hypertrophy and normalization of the augmented expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes by atenolol / nifedipine supports involvement of both pressure loading and ischemic insult in stimulating cardiomyocyte hypertrophy and induction of these counter-regulatory peptides and their receptor components. Attenuation of augmented expression of IMD in this model cannot however be explained simply by prevention of cardiomyocyte hypertrophy.
Resumo:
Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.