994 resultados para multiscale method
Resumo:
This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.
Resumo:
Small punch (SP) test techniques are typically used to study the mechanical properties of materials or components from miniature size specimens. This kind of test was originally developed to assess ductility loss in steel caused by irradiation or thermal treatment, particularly when the amount of metal was limited, but it soon proved to be a powerful method to estimate several properties.
Resumo:
En una planta de fusión, los materiales en contacto con el plasma así como los materiales de primera pared experimentan condiciones particularmente hostiles al estar expuestos a altos flujos de partículas, neutrones y grandes cargas térmicas. Como consecuencia de estas diferentes y complejas condiciones de trabajo, el estudio, desarrollo y diseño de estos materiales es uno de los más importantes retos que ha surgido en los últimos años para la comunidad científica en el campo de los materiales y la energía. Debido a su baja tasa de erosión, alta resistencia al sputtering, alta conductividad térmica, muy alto punto de fusión y baja retención de tritio, el tungsteno (wolframio) es un importante candidato como material de primera pared y como posible material estructural avanzado en fusión por confinamiento magnético e inercial. Sin embargo, el tiempo de vida del tungsteno viene controlado por diversos factores como son su respuesta termo-mecánica en la superficie, la posibilidad de fusión y el fallo por acumulación de helio. Es por ello que el tiempo de vida limitado por la respuesta mecánica del tungsteno (W), y en particular su fragilidad, sean dos importantes aspectos que tienes que ser investigados. El comportamiento plástico en materiales refractarios con estructura cristalina cúbica centrada en las caras (bcc) como el tungsteno está gobernado por las dislocaciones de tipo tornillo a escala atómica y por conjuntos e interacciones de dislocaciones a escalas más grandes. El modelado de este complejo comportamiento requiere la aplicación de métodos capaces de resolver de forma rigurosa cada una de las escalas. El trabajo que se presenta en esta tesis propone un modelado multiescala que es capaz de dar respuestas ingenieriles a las solicitudes técnicas del tungsteno, y que a su vez está apoyado por la rigurosa física subyacente a extensas simulaciones atomísticas. En primer lugar, las propiedades estáticas y dinámicas de las dislocaciones de tipo tornillo en cinco potenciales interatómicos de tungsteno son comparadas, determinando cuáles de ellos garantizan una mayor fidelidad física y eficiencia computacional. Las grandes tasas de deformación asociadas a las técnicas de dinámica molecular hacen que las funciones de movilidad de las dislocaciones obtenidas no puedan ser utilizadas en los siguientes pasos del modelado multiescala. En este trabajo, proponemos dos métodos alternativos para obtener las funciones de movilidad de las dislocaciones: un modelo Monte Cario cinético y expresiones analíticas. El conjunto de parámetros necesarios para formular el modelo de Monte Cario cinético y la ley de movilidad analítica son calculados atomísticamente. Estos parámetros incluyen, pero no se limitan a: la determinación de las entalpias y energías de formación de las parejas de escalones que forman las dislocaciones, la parametrización de los efectos de no Schmid característicos en materiales bcc,etc. Conociendo la ley de movilidad de las dislocaciones en función del esfuerzo aplicado y la temperatura, se introduce esta relación como ecuación de flujo dentro de un modelo de plasticidad cristalina. La predicción del modelo sobre la dependencia del límite de fluencia con la temperatura es validada experimentalmente con ensayos uniaxiales en tungsteno monocristalino. A continuación, se calcula el límite de fluencia al aplicar ensayos uniaxiales de tensión para un conjunto de orientaciones cristalográticas dentro del triángulo estándar variando la tasa de deformación y la temperatura de los ensayos. Finalmente, y con el objetivo de ser capaces de predecir una respuesta más dúctil del tungsteno para una variedad de estados de carga, se realizan ensayos biaxiales de tensión sobre algunas de las orientaciones cristalográficas ya estudiadas en función de la temperatura.-------------------------------------------------------------------------ABSTRACT ----------------------------------------------------------Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low longterm disposal radioactive footprint. However, tungsten also presents a very low fracture toughness, mostly associated with inter-granular failure and bulk plasticity, that limits its applications. As a result of these various and complex conditions of work, the study, development and design of these materials is one of the most important challenges that have emerged in recent years to the scientific community in the field of materials for energy applications. The plastic behavior of body-centered cubic (bcc) refractory metals like tungsten is governed by the kink-pair mediated thermally activated motion of h¿ (\1 11)i screw dislocations on the atomistic scale and by ensembles and interactions of dislocations at larger scales. Modeling this complex behavior requires the application of methods capable of resolving rigorously each relevant scale. The work presented in this thesis proposes a multiscale model approach that gives engineering-level responses to the technical specifications required for the use of tungsten in fusion energy reactors, and it is also supported by the rigorous underlying physics of extensive atomistic simulations. First, the static and dynamic properties of screw dislocations in five interatomic potentials for tungsten are compared, determining which of these ensure greater physical fidelity and computational efficiency. The large strain rates associated with molecular dynamics techniques make the dislocation mobility functions obtained not suitable to be used in the next steps of the multiscale model. Therefore, it is necessary to employ mobility laws obtained from a different method. In this work, we suggest two alternative methods to get the dislocation mobility functions: a kinetic Monte Carlo model and analytical expressions. The set of parameters needed to formulate the kinetic Monte Carlo model and the analytical mobility law are calculated atomistically. These parameters include, but are not limited to: enthalpy and energy barriers of kink-pairs as a function of the stress, width of the kink-pairs, non-Schmid effects ( both twinning-antitwinning asymmetry and non-glide stresses), etc. The function relating dislocation velocity with applied stress and temperature is used as the main source of constitutive information into a dislocation-based crystal plasticity framework. We validate the dependence of the yield strength with the temperature predicted by the model against existing experimental data of tensile tests in singlecrystal tungsten, with excellent agreement between the simulations and the measured data. We then extend the model to a number of crystallographic orientations uniformly distributed in the standard triangle and study the effects of temperature and strain rate. Finally, we perform biaxial tensile tests and provide the yield surface as a function of the temperature for some of the crystallographic orientations explored in the uniaxial tensile tests.
Resumo:
High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.
Resumo:
Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. ^ In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. ^ Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.^
Resumo:
Acknowledgments The authors acknowledge the support from Engineering and Physical Sciences Research Council, grant number EP/M002322/1. The authors would also like to thank Numerical Analysis Group at the Rutherford Appleton Laboratory for their FORTRAN HSL packages (HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/).
Resumo:
This paper deals with the development and the analysis of asymptotically stable and consistent schemes in the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To solve this problem, we propose a new scheme stable for choices of time steps independent from the small scales dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this first work on this subject, we propose a first order in time scheme and we perform a relative linear stability analysis to deal with such problems. The framework we propose permits to extend this approach to high order schemes in the next future. We finally show the capability of the method in dealing with small scales through numerical experiments.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
International audience
Resumo:
The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results
Resumo:
The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.
Resumo:
The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.
Resumo:
It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.