984 resultados para multifractional Brownian motion


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small particles and their dynamics are of widespread interest due both to their unique properties and their ubiquity. Here, we investigate several classes of small particles: colloids, polymers, and liposomes. All these particles, due to their size on the order of microns, exhibit significant similarity in that they are large enough to be visualized in microscopes, but small enough to be significantly influenced by thermal (or Brownian) motion. Further, similar optical microscopy and experimental techniques are commonly employed to investigate all these particles. In this work, we develop single particle tracking techniques, which allow thorough characterization of individual particle dynamics, observing many behaviors which would be overlooked by methods which time or ensemble average. The various particle systems are also similar in that frequently, the signal-to-noise ratio represented a significant concern. In many cases, development of image analysis and particle tracking methods optimized to low signal-to-noise was critical to performing experimental observations. The simplest particles studied, in terms of their interaction potentials, were chemically homogeneous (though optically anisotropic) hard-sphere colloids. Using these spheres, we explored the comparatively underdeveloped conjunction of translation and rotation and particle hydrodynamics. Developing off this, the dynamics of clusters of spherical colloids were investigated, exploring how shape anisotropy influences the translation and rotation respectively. Transitioning away from uniform hard-sphere potentials, the interactions of amphiphilic colloidal particles were explored, observing the effects of hydrophilic and hydrophobic interactions upon pattern assembly and inter-particle dynamics. Interaction potentials were altered in a different fashion by working with suspensions of liposomes, which, while homogeneous, introduce the possibility of deformation. Even further degrees of freedom were introduced by observing the interaction of particles and then polymers within polymer suspensions or along lipid tubules. Throughout, while examination of the trajectories revealed that while by some measures, the averaged behaviors accorded with expectation, often closer examination made possible by single particle tracking revealed novel and unexpected phenomena.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diffusion is the process that leads to the mixing of substances as a result of spontaneous and random thermal motion of individual atoms and molecules. It was first detected by the English botanist Robert Brown in 1827, and the phenomenon became known as ‘Brownian motion’. More specifically, the motion observed by Brown was translational diffusion – thermal motion resulting in random variations of the position of a molecule. This type of motion was given a correct theoretical interpretation in 1905 by Albert Einstein, who derived the relationship between temperature, the viscosity of the medium, the size of the diffusing molecule, and its diffusion coefficient. It is translational diffusion that is indirectly observed in MR diffusion-tensor imaging (DTI). The relationship obtained by Einstein provides the physical basis for using translational diffusion to probe the microscopic environment surrounding the molecule.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractional order dynamics in physics, particularly when applied to diffusion, leads to an extension of the concept of Brown-ian motion through a generalization of the Gaussian probability function to what is termed anomalous diffusion. As MRI is applied with increasing temporal and spatial resolution, the spin dynamics are being examined more closely; such examinations extend our knowledge of biological materials through a detailed analysis of relaxation time distribution and water diffusion heterogeneity. Here the dynamic models become more complex as they attempt to correlate new data with a multiplicity of tissue compartments where processes are often anisotropic. Anomalous diffusion in the human brain using fractional order calculus has been investigated. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (see R.L. Magin et al., J. Magnetic Resonance, 190 (2008) 255-270). However effective numerical methods and supporting error analyses for the fractional Bloch-Torrey equation are still limited. In this paper, the space and time fractional Bloch-Torrey equation (ST-FBTE) is considered. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we derive an analytical solution for the ST-FBTE with initial and boundary conditions on a finite domain. Secondly, we propose an implicit numerical method (INM) for the ST-FBTE, and the stability and convergence of the INM are investigated. We prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent. Finally, we present some numerical results that support our theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion; that is, not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space fractional advection-dispersion equation based on a fractional Fick's law. The equation involves the Riemann-Liouville fractional derivative which arises from assuming that particles may make large jumps. Finite difference methods for solving this equation have been proposed by Meerschaert and Tadjeran. In the variable coefficient case, the product rule is first applied, and then the Riemann-Liouville fractional derivatives are discretised using standard and shifted Grunwald formulas, depending on the fractional order. In this work, we consider a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Grunwald formulas are used to discretise the fractional derivatives at control volume faces. We compare the two methods for several case studies from the literature, highlighting the convenience of the finite volume approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.