760 resultados para mode-locked lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we extend theory of dispersion-managed (DM) solitons to dissipative systems with the main focus on applications in mode-locked lasers. In general, pulses in mode-locked fibre lasers experience both nonlinear and dispersion management per cavity round trip. In stretched-pulse lasers, this concept was utilized to obtain high energy pulses. Here we model the pulse propagation in a mode-locked fibre laser with a distributed nonlinear and DM Ginzburg-Landau type equation. We extend existing results on DM solitons and investigate the impact on soliton properties of dissipative perturbations that occur due to the effects of gain amplification, saturable absorption, and loss. In conclusion, in contrast to standard DM solitons in Hamiltonian systems, dissipative DM solitons do exist at high map strengths, thus opening a way for the generation of stable, short pulses with high energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sub-picosecond tunable ultrafast lasers are important tools for many applications. Here we present an ultrafast tunable fiber laser mode-locked by a nanotube based saturable absorber. The laser outputs ∼500fs pulses over a 33 nm range at 1.5μm. This outperforms the current achievable pulse duration from tunable nanotube mode-locked lasers. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare experimental results showing stable dissipative-soliton solutions exist in mode-locked lasers with ultra-large normal dispersion (as large as 21.5 ps2), with both the analytic framework provided by Haus' master-equation and full numerical simulations. © 2010 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A passively mode-locked diode end-pumped YVO4/Nd:YVO4 composite crystal laser with a five-mirror folded cavity was first demonstrated in this paper by using a low temperature semiconductor saturable absorber mirror grown by metal organic chemical vapor deposition. Both the Q-switching and continuous-wave mode locking operation were realized experimentally. A stable averaged output power of 10.15 W with pulse width of about 11.2-ps at a repetition rate of 113 MHz was obtained, and the optical-to-optical efficiency of 43% was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor saturable absorber mirrors (SESAMs) with GaAs/air interface relaxation region have less nonsaturable loss than those with low temperature grown In0.25Ga0.75As relaxation region. A thin layer Of SiO2 and a high reflectivity film Of Si/(SiO2/Si)(4) were coated on the SESAMs, respectively in order to improve the SESAM's threshold for damage. The passively continuous wave mode-locked lasers with two such SESAMs were demonstrated, and the SESAM with high reflectivity film of Si/(SiO2/Si)(4) is proved to be helpful for high output power. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated a self-staring passively continuous-wave mode-locked diode end-pumped Nd:YLF laser with a semiconductor saturable absorber mirror of single-quantum-well (In0.25Ga0.75As) grown by metal-organic chemical-vapor deposition technique at low temperature. The saturable absorber was used as nonlinear absorber and output coupler simultaneously. Stable pulse duration of 3 ps has been achieved at the repetition rate of 98 MHz. The average output power was 530 mW at 1053 nm under the incident pump power of 10 W, corresponding to the peak power of 1.8 kW and pulse energy of 5.4 nJ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 mu m wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.