242 resultados para microporous


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g-1. The thermal analysis indicates that above 600°C there is no significant mass loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to study the adsorption of phenol on activated carbons (ACs) and the consecutive in situ regeneration of carbon by Fenton oxidation. Two different operations have been carried Out: (1) a batch procedure in order to investigate the influence of Fe(2+) and H(2)O(2) concentrations; (2) continuous fixed bed adsorption, followed by a batch circulation of the Fenton`s reagent through the saturated AC bed. to examine the efficiency of the real process. Two different activated carbons have been also studied: a both micro- and mesoporous AC (L27) and an only microporous One (S23). In the batch reactor the best conditions found for pollutant mineralization in the homogeneous Fenton system are not the best For AC regeneration: a continuous reduction of adsorption capacity of L27 is observed after 3 oxidations, due to the decrease of both AC weight and surface area. Higher concentration of Fe(2+) and lower concentration of H(2)O(2) (2 times the stoichiometry) lead to a 50% recovery of the initial adsorption capacity during at least four consecutive cycles for L27, while about 20% or less for S23. In the consecutive continuous adsorption/batch Fenton oxidation process, the regeneration efficiency reaches 30-40% for L27 after two cycles whatever the feed concentration and less than 10% for S23. A photo-Fenton test performed on L27 shows almost complete mineralization (contrary to ""dark"" Fenton) and further improves recovery of AC adsorption capacity although not complete (56% after two cycles).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrogenation of cyclohexene over palladium supported in a microporous gamma-alumina pellet is studied thermogravimetrically with a view to measuring the extent of partial internal wetting associated with the different steady state branches. As many as three steady state branches having significantly different degrees of internal wetting and reaction rates, with transitions between them, are confirmed from observations of catalyst weight change. It is seen that with reduction in catalyst activity the middle branch, obtained by condensation from a vapor filled pellet, is much more prominent without showing an evaporative transition for the range of hydrogen partial pressures used here. The catalyst activity is therefore an important parameter affecting the structure of the steady state branches. Hysteresis effects are found to occur, and the thermogravimetric results also confirm the importance of history in determining the catalyst state. The measured degree of wetting is in accordance with that estimated from a mathematical model incorporating capillary condensation effects in addition to reaction-diffusion phenomena. The same model also satisfactorily interprets the reaction rate variations and transitions seen in the present work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical model of capillary equilibrium in cylindrical pores is modified here by the introduction of molecular concepts and the solid fluid interaction potential. The new approach accurately predicts capillary coexistence and criticality, with results quantitatively matching those from density functional theory for nitrogen adsorption, while also predicting condensation pressures in agreement with reported experimental findings for MCM-41. The larger critical pore size for nitrogen adsorption in these materials, however, suggests a modification of the potential function parameters, evaluated here from data for hydroxylated silica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas sorption by coal is closely related to its physical and chemical properties, which are, in turn, governed by coal type and rank. The role of coal type (sensu maceral composition) is not fully established but it is clear that coal type may affect both adsorption capacity and desorption rate. Adsorption capacity is closely related to micropore (pores <2 nm) development, which is rank and maceral dependent. Adsorption isotherms indicate that in most cases bright (vitrinite-rich) coals have a greater adsorption capacity than their dull (often inertinite-rich) equivalents. However, no differences, or even the opposing trend, may be observed in relation to coal type. Desorption rate investigations have been performed using selected bright and dull coal samples in a high pressure microbalance. Interpretation of results using unipore spherical and bidisperse pore models indicate the importance of the pore structure. Bright, vitrinite-rich coals usually have the slowest desorption rates which is associated with their highly microporous structure. However, rapid desorption in bright coals may be related to development of extensive, unmineralised fracture systems. Both macro-and micro-pore systems are implicated in the more rapidly desorbing dull coals. Some dull, inertinite-rich coals may rapidly desorb due to a predominance of large, open cell lumina. Mineral matter is essentially nonadsorbent to coal gases and acts as a simple diluent. However, mineral-rich coals may be associated with more rapid desorption. Coal rank and type (maceral composition) per se do not appear to be the critical factors in controlling gas sorption, but rather the influence they exert over pore structure development. (C) 1998 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Naturally occurring clays and pillared clays are used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of the supports and catalysts are systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD) techniques. It is found that the pore structures and surface properties of supports greatly affect the catalytic activities of the catalysts prepared. The catalysts supported on the mesoporous clays or pillared clays are obviously superior to those on microporous supports because the mesoporous supports are highly thermal stable compared to the microporous ones. It is found that introducing lanthanum to the supports can improve the catalyst basicity and thus enhance the catalytic activities of these catalysts. Deactivation of catalysts prepared and factors influencing their stability are also discussed. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recently discovered mesoporous molecular sieve MCM-41 was tested as an adsorbent for VOC removal. Its adsorption/desorption properties were evaluated and compared with other hydrophobic zeolites (silicalite-1 and zeolite Y) and a commercial activated carbon, BPL. The adsorption isotherms of some typical VOCs (benzene, carbon tetrachloride, and n-hexane) on MCM-41 are of type IV according to the IUPAC classification, drastically different from the other microporous adsorbents, indicating that VOCs, in the gas phase, have to be at high partial pressures in order to make the most of the new mesoporous material as an adsorbent for VOC removal. However, a proper modification of the pore openings of MCM-41 can change the isotherm types from type IV to type I without remarkable loss of the accessible pare volumes and, therefore, significantly enhance the adsorption performance at low partial pressures. Adsorption isotherms of water on these adsorbents are all of type V, demonstrating that they possess a similar hydrophobicity. Desorption of VOCs from MCM-41 could be achieved at lower temperatures (50-60 degrees C), while this had to be conducted at higher temperatures (100-120 degrees C) for microporous adsorbents, zeolites, and activated carbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Percolative fragmentation was confirmed to occur during gasification of three microporous coal chars. Indirect evidence obtained by the variation of electrical resistivity (ER) with conversion was supported by direct observation of numerous fragments during gasification. The resistivity increases slowly at low conversions and then sharply after a certain conversion value, which is a typical percolation phenomenon suggesting the occurrence of internal fragmentation at high conversion. Two percolation models are applied to interpret the experimental data and determine the percolation threshold. A percolation threshold of 0.02-0.07 was found, corresponding to a critical conversion of 92-96% for fragmentation. The electrical resistivity variation at high conversions is found to be very sensitive to diffusional effects during gasification. Partially burnt samples with a narrow initial particle size range were also observed microscopically, and found to yield a large number of small fragments even when the particles showed no disintegration and chemical control prevailed. It is proposed that this is due to the separation of isolated clusters from the particle surface. The particle size distribution of the fragments was essentially independent of the reaction conditions and the char type, and supported the prediction by percolation theory that the number fraction distribution varies linearly with mass in a log-log plot. The results imply that perimeter fragmentation would occur in practical combustion systems in which the reactions are strongly diffusion affected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a new nonlocal density functional theory characterization procedure, the finite wall thickness model, for nanoporous carbons, whereby heterogeneity of pore size and pore walls in the carbon is probed simultaneously. We determine the pore size distributions and pore wall thickness distributions of several commercial activated carbons and coal chars, with good correspondence with X-ray diffraction. It is shown that the conventional infinite wall thickness approach overestimates the pore size slightly. Pore-pore correlation has been shown to have a negligible effect on prediction of pore size and pore wall thickness distributions for small molecules such as argon used in characterization. By utilizing the structural parameters (pore size and pore wall thickness distribution) in the generalized adsorption isotherm (GAI) we are able to predict adsorption uptake of supercritical gases in BPL and Norit RI Extra carbons, in excellent agreement with experimental adsorption uptake data up to 60 MPa. The method offers a useful technique for probing features of the solid skeleton, hitherto studied by crystallographic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports for the first time superior electric double layer capacitive properties of ordered mesoporous carbon (OMCs) with varying ordered pore symmetries and mesopore structure. Compared to commercially used activated carbon electrode, Maxsorb, these OMC carbons have superior capacitive behavior, power output and high-frequency performance in EDLCs due to the unique structure of their mesopore network, which is more favorable for fast ionic transport than the pore networks in disordered microporous carbons. As evidenced by N-2 sorption, cyclic voltammetry and frequency response measurements, OMC carbons with large mesopores, and especially with 2-D pore symmetry, show superior capacitive behaviors (exhibiting a high capacitance of over 180 F/g even at very high sweep rate of 50 mV/s, as compared to much reduced capacitance of 73 F/g for Maxsorb at the same sweep rate). OMC carbons can provide much higher power density while still maintaining good energy density. OMC carbons demonstrate excellent high-frequency performances due to its higher surface area in pores larger than 3 nm. Such ordered mesoporous carbons (OMCs) offer a great potential in EDLC capacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm(2) ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P <= .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. (C) 2008 American Association of Oral and Maxillofacial Surgeons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modification of the Dubinin-Radushkevich pore filling model by incorporation of the repulsive contribution to the pore potential, and of bulk non-ideality, is proposed in this paper for characterization of activated carbon using liquid phase adsorption. For this purpose experiments have been performed using ethyl propionate, ethyl butyrate, and ethyl isovalerate as adsorbates and the microporous-mesoporous activated carbons Filtrasorb 400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The repulsive contribution to the pore potential is incorporated through a Lennard-Jones intermolecular potential model, and the bulk-liquid phase non-ideality through the UNIFAC activity coefficient model. For the characterization of activated carbons, the generalized adsorption isotherm is utilized with a bimodal gamma function as the pore size distribution function. It is found that the model can represent the experimental data very well, and significantly better than when the classical energy-size relationship is used, or when bulk non-ideality is neglected. Excellent agreement between the bimodal gamma pore size distribution and DFT-cum-regularization based pore size distribution is also observed, supporting the validity of the proposed model. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pore-opening size of MCM-41 is tailored to be in the microporous region using a chemical vapor deposition technique for selective tailoring. Although the pore opening is narrowed, the internal pore body of MCM-41 remains unchanged so the pore volume retains a substantial portion (80%) of its original value. The adsorption equilibrium of nitrogen and benzene in the modified MCM-41 shows a type I isotherm, which significantly improves the adsorption performance of MCM-41 for low-concentration volatile organic compounds. The adsorption kinetics of benzene in the modified MCM-41 is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Henry constant is commonly used as a measure of how strong an adsorbate is attracted towards a solid surface and is regarded as one of the fundamental parameters in adsorption studies. Having a sound basis in thermodynamics, the Henry Law is often used as a criterion to evaluate the validity of adsorption isotherm equations. However, the application of the Henry Law for microporous materials, especially microporous activated carbon, remains questionable. It is the aim of this paper to examine the Henry Law behavior of supercritical adsorbates in carbonaceous pores of different sizes, and to define the conditions for the Henry Law to be applicable for carbonaceous adsorbents.