99 resultados para microcapsules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turmeric oleoresin is a colorant prepared by solvent extraction of turmeric (Curcuma longa L.). Curcumin, the major pigment present in turmeric, has been described as a potent antioxidant, anti-inflammatory and anticarcinogenic agent. Turmeric pigments are lipid soluble and water insoluble and are sensitive to light, heat, oxygen and pH, which can be overcome by microencapsulation of turmeric oleoresin. The aim of this work was to investigate microencapsulation of turmeric oleoresin by complex coacervation using gelatin and gum Arabic as encapsulants and freeze-drying as the drying method. The coacervation process was studied by varying the concentration of biopolymer solution (2.5, 5.0 and 7.5%) and the core material: total encapsulant ratio (25, 50, 75 and 100%). Microcapsules were evaluated for encapsulation efficiency, morphology, solubility and stability to light. Encapsulation efficiency ranged from 49 to 73% and samples produced with 2.5% of wall material and 100% core: encapsulant ratio showed better stability to light. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microencapsulation can be an alternative to minimize lycopene instability. Thus, the aim of this study was to microencapsulate lycopene by spray drying, using a modified starch (Capsul (R)) as an encapsulating agent, and to assess the functionality of the capsules applying them in cake. The quantity of lycopene was varied at 5, 10 and 15% in a solution containing 30% of solids in order to obtain the microcapsules. These microcapsules were evaluated as to encapsulation efficiency and morphology and then submitted to a stability test and applied in cakes. Encapsulation efficiency values varied between 21 and 29%. The microcapsules had a rounded outer surface with the formation of concavities and they varied in size. The stability test revealed that microencapsulation offered greater protection to lycopene compared to its free form and it was observed that the microcapsules were able to release pigment and color the studied food system in a homogenous manner. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we have presented the preparation of highly crosslinked spherical photoreactive colloidal particles of radius about 10 nm based on the monomer trimethoxysilane. These particles are labeled chemically with two different dye systems (coumarin, cinnamate) which are known to show reversible photodimerization. By analyzing the change in particle size upon UV irradiation with dynamic light scattering, we could demonstrate that the partially reversible photoreaction in principle can be utilized to control increase and decrease of colloidal clusters. Here, selection of the appropriate wavelengths during the irradiation employing suitable optical filters proved to be very important. Next, we showed how photocrosslinking of our nanoparticles within the micrometer-sized thin oil shell of water-oil-water emulsion droplets leads to a new species of optically addressable microcontainers. The inner water droplet of these emulsions may contain drugs, dyes or other water-soluble components, leading to filled containers. Thickness, mechanical stability and light resistance of the container walls can be controlled in a simple way by the amount and adjustable photoreactivity (= No. of labels/particle) of the nanoparticles. Importantly, the chemical bonds between the nanoparticles constituting the microcapsule shell can be cleaved photochemically by irradiation with uv light. An additional major advantage is that filling our microcapsules with water-soluble substrate molecules is extremely simple using a solution of the guest molecules as inner water phase of the W/O/W-emulsion. This optically controlled destruction of our microcontainers thus opens up a pathway to controlled release of the enclosed components as illustrated by the example of enclosed cyclodextrin molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed work aims to facilitate the development of a microfluidic platform for the production of advanced microcapsules containing active agents which can be the functional constituents of self-healing composites. The creation of such microcapsules is enabled by the unique flow characteristics within microchannels including precise control over shear and interfacial forces for droplet creation and manipulation as well as the ability to form a solid shell either chemically or via the addition of thermal or irradiative energy. Microchannel design and a study of the fluid dynamics and mechanisms for shell creation are undertaken in order to establish a fabrication approach capable of producing healing-agent-containing microcapsules. An in-depth study of the process parameters has been undertaken in order to elucidate the advantages of this production technique including precise control of size (i.e., monodispersity) and surface morphology of the microcapsules. This project also aims to aid the optimization of the mechanical properties as well as healing performance of self-healing composites by studying the effects of the advantageous properties of the as-produced microcapsules. Scale-up of the microfluidic fabrication using parallel devices on a single chip as well as on-chip microcapsule production and shape control will also be investigated. It will be demonstrated that microfluidic fabrication is a versatile approach for the efficient creation of functional microcapsules allowing for superior design of self-healing composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biocompatible polypeptide capsules with high enzyme loading and activity prepared by templating mesoporous silica spheres were used as biomimetic reactors for performing CaCO3 synthesis exclusively inside the capsule interior via urease-catalyzed urea hydrolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabrication of multilayer microcapsules via layer-by-layer approach through hydrogen bonding has attracted enormous interest due to its strong response to pH. In this communication, we have prepared hydrogen-bonded multilayer microcapsule without using any cross-linking agent by using DNA base pair (adenine and thymine) modified biocompatible polymers. The growth of the self-assembly on colloidal (melamine formaldehyde: MF) particles has been monitored with zeta potential measurement. The capsules were obtained on dissolution of MF particles at 0.1N HCl. The capsules were characterized with scanning electron microscopy. Moreover, we have observed the salt induced microscopic change in self-assembly of this system on the surface of colloidal particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable hollow microcapsules composed of sodium carboxymethyl cellulose (CMC) and poly (allylamine hydrochloride) (PAH) were produced by layer-by-layer adsorption of polyelectrolytes onto CaCO 3 microparticles. Subsequently the core was removed by addition of chelating agents for calcium ions. Zeta potential studies showed charge reversal with deposition of successive polyelectrolyte layers, indicating that the alternate electrostatic adsorption of polyelectrolytes of opposite charge was successfully achieved. The size and surface morphology of the capsules was characterized by various microscopy techniques. The pH responsive loading behavior was elucidated by confocal laser scanning microscopy (CLSM) studies using fluorescence labeled dextran (FITC-dextran) and labeled BSA (FITC-BSA). CLSM images confirmed the open (pH ≤ 6) and closed state (pH ≥ 7) of the capsules. A model drug bovine serum albumin (BSA) was spontaneously loaded below its isoelectric point into hollow microcapsules, where BSA is positively charged. The loading of the BSA into the microcapsules was found to be dependent on the feeding concentration and pH of the medium. 65 of the loaded BSA was released over 7h of which about 34 was released in the first hour. These findings demonstrate that (CMC/PAH) 2 hollow capsules can be further exploited as a potential drug delivery system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel and simple route for near-infrared (NIR)-light controlled release of drugs has been demonstrated using graphene oxide (GO) composite microcapsules based on the unique optical properties of GO. Upon NIR-laser irradiation, the microcapsules were ruptured in a point-wise fashion due to local heating which in turn triggers the light-controlled release of the encapsulated anticancer drug doxorubicin (Dox) from these capsules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文由三章组成。第一章介绍了中药蜘蛛香的化学成分的研究成果,第二章为羧甲基魔芋葡苷聚糖-壳聚糖为细胞膜的天冬酰胺酶人工细胞的研究,第三章综述了人工细胞在生物医学领域的应用。 第一章报道了中药蜘蛛香(Valeriana wallichii)根部乙醇提取物的化学成分,采用正、反相硅胶层析等分离方法和MS、NMR等多种波谱手段,从中共分离鉴定出17个化合物,分别为缬草素(valtrate,1),valechlorine(2),homobadrinal(3),baldrinal(4),乙酰缬草素(acevaltrate 5),valeriotetrate C(6),valeriotetrate B(7),对羟基苯乙酮(4'-hydroxy-acetophenone 8),7-hydroxy valtrate(9),8-methylvalepotriate(10),1,5-dihydroxy-3,8-epoxyvalechlorine A(11),二氢缬草素(didrovaltrate 12),胡萝卜苷(13),橙皮苷 (hesperidin 14),prinsepiol-4-O-β-D-glucopyranoside(15),longiflorone(16),乙基糖苷(17)。其中化合物6、7、10、和11为新化合物,化合物9、15、16为首次从该植物中得到。新化合物11为含有氯原子的刚性骨架环烯醚萜,并且确定了其绝对构型。 第二章报道了以羧甲基魔芋葡苷聚糖(CKGM)和壳聚糖(CS)为膜的固定化L-天冬酰胺酶人工细胞研究成果。利用羧甲基魔芋葡苷聚糖和壳聚糖两种生物相容性很好的天然多糖之间的静电吸引力,在非常温和的条件下制备成具有半透过性膜的人工细胞,将治疗儿童急性成淋巴细胞性白血病(ALL)的药物L-天冬酰胺酶包裹在内。通过考察温度和pH对人工细胞的影响,结果表明以CKGM- CS为膜的L-天冬酰胺酶人工细胞对温度和pH的稳定性和耐受性均高于自由酶,说明CKGM-CS对酶具有保护作用,而且小分子底物和产物可以自由进出膜内外,而包裹在膜内的生物大分子则不能泄露出来。 第三章综述了微囊化人工细胞的研究进展。 This dissertation consists of three parts. In the first part, the chemical constituents from the root of Valeriana wallichii were reported. In the second part, preparation and characteristics of L-Asparaginase Artificial cell were reported. The third part is a review on progress of microcapsule artificial cell. The first chapter is about the isolation and identification of the chemical constituents from the root of V. wallichii. Seventeen compounds were isolated from the ethanol extract of roots of V. wallichii through repeated column chromatography on normal and reversed phase silica gel. By the spectroscopic and chemical evidence, their structures were elucidated as valtrate (1), valechlorine (2), homobadrinal (3), baldrinal (4), acevaltrate (5), valeriotetrate C (6), valeriotetrate B (7), 4'-hydroxy-acetophenone (8), 7-hydroxy valtrate (9), 8-methylvalepotriate (10), 1,5-dihydroxy-3,8-epoxyvalechlorine A (11), didrovaltrate (12), daucosterol (13), hesperidin (14), prinsepiol-4-O-β-D-glucopyranoside (15), longiflorone (16), and ethyl glucoside (17). Among them, 6, 7, 10, and 11 are new compounds. 15, 16 and 9 were isolated from this plant for the first time. The absolute configuration of compound 11, an unusual iridoid bearing a C-10 chlor-group and an oxo-bridge connecting C-3 and C-8 resulting in a rigid skeleton, was confirmed. The second chapter is about the semi-permeable microcapsule of carboxymethyl konjac glucomannan-chitosan for L-asparaginase immobilization. Carboxymethyl konjac glucomannan-chitosan (CKGM-CS) microcapsules, which have good biocompatibility, prepared under very mild conditions via polyelectrostatic complexation, were used for immobilize L-asparaginase-a kind of drug for acute lymphoblastic leukemia (ALL). The activity and stability under different temperature and pH of the enzyme loaded-microcapsules were studied. The results indicated the immobilized enzyme has better stability and activity contrasting to the native enzyme. The study illustrates that the L-asparaginase could be protected in CKGM-CS microcapsules, the substrate and product could pass through the system freely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyurea microcapsules about 2.5 mum in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.