Photoreactive polyorganosiloxane nanoparticles and the fabrication of photocleavable microcapsules


Autoria(s): Yuan, Xiaofeng
Data(s)

2005

Resumo

In this thesis, we have presented the preparation of highly crosslinked spherical photoreactive colloidal particles of radius about 10 nm based on the monomer trimethoxysilane. These particles are labeled chemically with two different dye systems (coumarin, cinnamate) which are known to show reversible photodimerization. By analyzing the change in particle size upon UV irradiation with dynamic light scattering, we could demonstrate that the partially reversible photoreaction in principle can be utilized to control increase and decrease of colloidal clusters. Here, selection of the appropriate wavelengths during the irradiation employing suitable optical filters proved to be very important. Next, we showed how photocrosslinking of our nanoparticles within the micrometer-sized thin oil shell of water-oil-water emulsion droplets leads to a new species of optically addressable microcontainers. The inner water droplet of these emulsions may contain drugs, dyes or other water-soluble components, leading to filled containers. Thickness, mechanical stability and light resistance of the container walls can be controlled in a simple way by the amount and adjustable photoreactivity (= No. of labels/particle) of the nanoparticles. Importantly, the chemical bonds between the nanoparticles constituting the microcapsule shell can be cleaved photochemically by irradiation with uv light. An additional major advantage is that filling our microcapsules with water-soluble substrate molecules is extremely simple using a solution of the guest molecules as inner water phase of the W/O/W-emulsion. This optically controlled destruction of our microcontainers thus opens up a pathway to controlled release of the enclosed components as illustrated by the example of enclosed cyclodextrin molecules.

Formato

application/pdf

Identificador

urn:nbn:de:hebis:77-8042

http://ubm.opus.hbz-nrw.de/volltexte/2005/804/

Idioma(s)

eng

Publicador

09: Chemie, Pharmazie und Geowissenschaft. 09: Chemie, Pharmazie und Geowissenschaft

Direitos

http://ubm.opus.hbz-nrw.de/doku/urheberrecht.php

Palavras-Chave #Chemistry and allied sciences
Tipo

Thesis.Doctoral