968 resultados para metal ion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of thiamine or thiamine monophosphate (TMP) with K2Pt(NO2)(4) afforded a metal complex, Pt(thiamine)(NO2)(3) (1), and two salt-type compounds, (H-thiamine)[Pt(NO2)(4)]. 2H(2)O (2) and (TMP)(2)[Pt(NO2)(4)]. 2H(2)O (3), which were structurally characterized by X-ray diffraction. In 1, the square-planar Pt2+ ion is coordinated to the pyrimidine N(1'), a usual metal-binding site, and three NO2- groups. The thiamine molecule exists as a monovalent cation in 1 and a divalent cation in 2 while the TMP molecule is a monovalent cation in 3. In each compound, thiamine or TMP adopts the usual F conformation and forms two types of host-guest-like interactions with anions, which are of the bridging forms, C(2)-H . . . anion . . . pyrimidine-ring and N(4'1)-H(...)anion(...)thiazolium-ring. In 3, there is an additional anion-bridging interaction between the pyrimidine and thiazolium rings of TMP, being of the form C(6')-H . . . anion . . . thiazolium-ring. The salts 2 and 3 show similar hydrogen-bonded cyclic dimers of thiamine or TMP between which the anions are held. Results are compared with those of the other thiamine-platinum complexes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of metal (Li+, Na+, K+, Ag+) cationization on collision-induced dissociation of ginsenosides was investigated by electrospray ionization mass spectrometry combined with multi-stage mass spectrometry (ESI-MSn). The fragments of sodiated and lithiated molecules give valuable structural information regarding the nature of the aglycone and the sequence and linkage information of sugar moieties. However, the number and relative abundances of fragment ions from lithiated ginsenosides are significantly greater than for the sodiated species, The K+ adducts undergo glycosidic cleavages and very limited cross-ring reactions. The silver ion adducts fragment mainly through glycosidic cleavages. Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces, facilitated by the ionophore ETH157, has been investigated by cyclic voltammetry (CV). The mechanism of the transfer process has been discussed, and the diffusion coefficients and the stability constants of the complexes formed in the nitrobenzene phase have been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3' oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3' S–P bond being cleaved nearly as fast as the 3' O–P bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3' oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9–12.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional water purification and disinfection generally involve potentially hazardous substances, some of which known to be carcinogenic in nature. Titanium dioxide photocatalytic processes provide an effective route to destroy hazardous organic contaminants. This present work explores the possibility of the removal of organic pollutants (phenol) by the application of TiO2 based photocatalysts. The production of series of metal ions doped or undoped TiO2 were carried out via a sol–gel method and a wet impregnation method. Undoped TiO2 and Cu doped TiO2 showed considerable phenol degradation. The efficiency of photocatalytic reaction largely depends on the photocatalysts and the methods of preparation the photocatalysts. The doping of Fe, Mn, and humic acid at 1.0 M% via sol–gel methods were detrimental for phenol degradation. The inhibitory effect of initial phenol concentration on initial phenol degradation rate reveals that photocatalytic decomposition of phenol follows pseudo zero order reaction kinetics. A concentration of > 1 g/L TiO2 and Cu doped TiO2 is required for the effective degradation of 50 mg/L of phenol at neutral pH. The rise in OH- at a higher pH values provides more hydroxyl radicals which are beneficial of phenol degradation. However, the competition among phenoxide ion, Cl- and OH- for the limited number of reactive sites on TiO2 will be a negative influence in the generation of hydroxyl radical. The dependence of phenol degradation rate on the light intensity was observed, which also implies that direct sunlight can be a substitute for the UV lamps and that photocatalytic treatment of organic pollutants using this technique shows some promise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallo-azomethine ylides, generated from imines by the action of amine bases in combination with LiBr or AgOAc, undergo cycloaddition with both 1R, 2S, 5R- and 1S, 2R, 5S-menthyl acrylate at room temperature to give homochiral pyrrolidines in excellent yield. The stronger the base the faster the cycloaddition and the greater the yield with: 2-t-butyl-1,1,3,3-tetramethylguanidine > DBU > NEt(3) X-Ray crystal structures of representative cycloadducts establish that the absolute configuration of the newly established pyrrolidine stereocentres is independent of the metal salt and the size of the pyrrolidineC(2)-substituent for a series of aryl and aliphatic imines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2. K. Gow, P.K.J Robertson, P.M. Pollard, and K. Christidis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexes 1a·EuIII and 1b·EuIII, but not 1a·TbIII and 1b·TbIII, display strong ‘off–on’ switching of delayed luminescence with alkali cations; the switching efficiency of 1b·EuIII is stronger with K+ rather than Na+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosciences & Photonics, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science & Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of residual cations in rare earth metal modified faujasite–Y zeolite has been monitored using magic angle spinning NMR spectral analysis and catalytic activity studies. The second metal ions being used are Na+, K+ and Mg+. From a comparison of the spectra of different samples, it is concluded that potassium and magnesium exchange causes a greater downfield shift in the 29Si NMR peaks. Also, lanthanum exchanged samples show migration behavior from large cages to small cages, which causes the redistribution of second counter cations. It is also observed that Mg2+ causes the most effective migration of lanthanum ions due to its greater charge. The prepared systems were effectively employed for the alkylation of benzene with 1-octene in the vapor phase. From the deactivation studies it is observed that the as-exchanged zeolites possess better stability towards reaction condition over the pure HFAU zeolite.