938 resultados para mesenchymal cells


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Superficial digital flexor tendonitis is an important cause of lameness in horses and its incidence ranges from 13% to 30%, depending on the horse's activity. This injury can occur in yearlings and compromise its carriers by reinjury or even impossibility to return to athletic life. In spite of the long period required for tendon repair, the scar tissue presents lack of elasticity and stiffness. As current treatment strategies produce only marginal results, there has been great interest in research of therapies that influence the quality or the speed of tendon repair. Stem cell therapy has shown promising results in degenerative diseases and cases of deficient healing processes. This study aims to evaluate the influence of autologous mesenchymal bone marrow stem cells in tendon healing, comparing treated and non-treated tendons. Superficial digital flexor tendonitis lesions were induced by collagenase infiltration in both forelimbs of 6 horses, followed by autologous implant in one of the forelimbs of each animal. The horses were evaluated using clinical, ultrasonographic, histopathologic, and immunohistochemical parameters. Tendon biopsies were performed at Day 48. Results found in the treatment group, such as high inflammatory cells infiltration, extracellular matrix synthesis, reduced amount of necrosis areas, small increase in cellular proliferation (KI-67/MIB-1), and low immunoreactivity to transforming growth factor P I, suggested the acceleration of tendon repair in this group. Further studies should be conducted in order to verify the influence of this treatment on later phases of tendon repair. Overall, after analysis of the results, we can conclude that cellular therapy with the mononuclear fraction of bone marrow has accelerated tendon repair at 48 days after treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bone marrow is a source of stem cells for greater and easier access, which is widely studied as a provider of hematopoietic and mesenchymal cells for various purposes, mainly therapeutic by the advances in research involving cell therapy. The swine is an animal species commonly used in the pursuit of development of experimental models. Thus, this study aimed to standardize protocol for collection and separation of bone marrow in swines, since this species is widely used as experimental models for various diseases. Twelve animals were used, which underwent bone marrow puncture with access from the iliac crest and cell separation by density gradient followed by a viability test with an average of 98% of viable cells. Given our results, we can ensure the swine as an excellent model for obtaining and isolation of mononuclear cells from bone marrow, stimulating several studies addressing the field of cell therapy. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract Findings We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 and Cfdp1), four are associated with cell signalling pathways (Lrp6, Dvl1, Ecsit and PKCδ) and seven are associated with the extracellular matrix (Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 and IGFBP-rP10). The novel identified genes include: Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 and IGFBP-rP10. Background BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction in vitro and in vivo, and both proteins are therapeutically applied in orthopaedics and dentistry. Conclusion Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to more fully understand the function of surface GalTase on mesenchymal cells, anti-GalTase IgG was used to (a) examine the role of surface GalTase during mouse mesenchymal cell migration on laminin and fibronectin; (b) define the plasma membrane distribution of GalTase by indirect immunofluorescence on migrating cells; (c) quantitate the level of surface GalTase on migrating cells; and (d) determine whether GalTase is associated with the cytoskeleton.^ Results show that anti-GalTase IgG was able to inhibit migration (48-80% as compared to basal rate) when cells were migrating on laminin-containing matrices. Monovalent Fab fragments inhibited migration on laminin by 90% after 4 hours. On the other hand, anti-GalTase IgG had no effect on cells migrating on fibronectin. This illustrates the substrate specificity of GalTase mediated-migration. When anti-GalTase IgG was used to localize surface GalTase on cells migratory on laminin, the enzyme was restricted to the leading and trailing edges of the cell. Assays indicate that GalTase is elevated approximately 3-fold when cells are migrating on laminin-containing matrices as compared to migratory cells on plastic or fibronectin, or as compared to stationary cells on any substrate. Laminin appears to recruit GalTase from preexisting intracellular pools to the growing lamellipodia.^ Double-label indirect immunofluorescence studies indicate that there is an apparent co-localization between some of the surface GalTase and some actin filaments. This relationship was explored by extracting cells prelabeled with anti-GalTase IgG and quantitated by radiolabeled second antibodies. Results show that 79% of the surface GalTase is associated with the cytoskeleton (as judged by detergent insolubility) when monovalent antibodies (Fab) are used. However virtually all (80-100%) of the surface GalTase can be induced to associate with the cytoskeleton when cross-linked with bivalent antibodies. Furthermore, when cells in suspension are incubated with divalent antibodies, an additional 66% of the surface GalTase can be induced to associate with the cytoskeleton. The elevated levels of surface GalTase detectable on cells migrating on laminin also appear to be associated with the cytoskeleton.^ Several lines of evidence suggest that GalTase is associated with F-actin. Data suggest that laminin induces the expression of surface GalTase to the growing lamellipodia where it becomes associated with the cytoskeleton leading to cell spreading and migration. (Abstract shortened with permission of author.) ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hematopoietic stem cells (HSCs) are rare, multipotent cells that generate via progenitor and precursor cells of all blood lineages. Similar to normal hematopoiesis, leukemia is also hierarchically organized and a subpopulation of leukemic cells, the leukemic stem cells (LSCs), is responsible for disease initiation and maintenance and gives rise to more differentiated malignant cells. Although genetically abnormal, LSCs share many characteristics with normal HSCs, including quiescence, multipotency and self-renewal. Normal HSCs reside in a specialized microenvironment in the bone marrow (BM), the so-called HSC niche that crucially regulates HSC survival and function. Many cell types including osteoblastic, perivascular, endothelial and mesenchymal cells contribute to the HSC niche. In addition, the BM functions as primary and secondary lymphoid organ and hosts various mature immune cell types, including T and B cells, dendritic cells and macrophages that contribute to the HSC niche. Signals derived from the HSC niche are necessary to regulate demand-adapted responses of HSCs and progenitor cells after BM stress or during infection. LSCs occupy similar niches and depend on signals from the BM microenvironment. However, in addition to the cell types that constitute the HSC niche during homeostasis, in leukemia the BM is infiltrated by activated leukemia-specific immune cells. Leukemic cells express different antigens that are able to activate CD4(+) and CD8(+) T cells. It is well documented that activated T cells can contribute to the control of leukemic cells and it was hoped that these cells may be able to target and eliminate the therapy-resistant LSCs. However, the actual interaction of leukemia-specific T cells with LSCs remains ill-defined. Paradoxically, many immune mechanisms that evolved to activate emergency hematopoiesis during infection may actually contribute to the expansion and differentiation of LSCs, promoting leukemia progression. In this review, we summarize mechanisms by which the immune system regulates HSCs and LSCs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cells from transgenic mice expressing a human mini-gene for collagen I were used as markers to follow the fate of mesenchymal precursor cells from marrow that were partially enriched by adherence to plastic, expanded in culture, and then injected into irradiated mice. Sensitive PCR assays for the marker collagen I gene indicated that few of the donor cells were present in the recipient mice after 1 week, but 1-5 months later, the donor cells accounted for 1.5-12% of the cells in bone, cartilage, and lung in addition to marrow and spleen. A PCR in situ assay on lung indicated that the donor cells diffusely populated the parenchyma, and reverse transcription-PCR assays indicated that the marker collagen I gene was expressed in a tissue-specific manner. The results, therefore, demonstrated that mesenchymal precursor cells from marrow that are expanded in culture can serve as long-lasting precursors for mesenchymal cells in bone, cartilage, and lung. They suggest that cells may be particularly attractive targets for gene therapy ex vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, poly (e-caprolactone) [PCL] and its collagen composite blend (PCL=Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL=Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL=Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL=Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength.We conclude that electrospun PCL=Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to evaluate the feasibility and potential of a hybrid scaffold system in large- and high-load-bearing osteochondral defects repair. The implants were made of medical-grade PCL (mPCL) for the bone compartment whereas fibrin glue was used for the cartilage part. Both matrices were seeded with allogenic bone marrow-derived mesenchymal cells (BMSC) and implanted in the defect (4 mm diameter×5 mm depth) on medial femoral condyle of adult New Zealand White rabbits. Empty scaffolds were used at the control side. Cell survival was tracked via fluorescent labeling. The regeneration process was evaluated by several techniques at 3 and 6 months post-implantation. Mature trabecular bone regularly formed in the mPCL scaffold at both 3 and 6 months post-operation. Micro-Computed Tomography showed progression of mineralization from the host–tissue interface towards the inner region of the grafts. At 3 months time point, the specimens showed good cartilage repair. In contrast, the majority of 6 months specimens revealed poor remodeling and fissured integration with host cartilage while other samples could maintain good cartilage appearance. In vivo viability of the transplanted cells was demonstrated for the duration of 5 weeks. The results demonstrated that mPCL scaffold is a potential matrix for osteochondral bone regeneration and that fibrin glue does not inherit the physical properties to allow for cartilage regeneration in a large and high-load-bearing defect site. Keywords: Osteochondral tissue engineering; Scaffold; Bone marrow-derived precursor cells; Fibrin glue

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regeneration of osseous defects by tissue-engineering approach provides a novel means of treatment utilizing cell biology, materials science, and molecular biology. The concept of in vitro cultured osteoblasts having an ability to induce new bone formation has been demonstrated in the critical size defects using small animal models. The bone derived cells can be incorporated into bioengineered scaffolds and synthesize bone matrix, which on implantation can induce new bone formation. In search of optimal cell delivery materials, the extracellular matrix as cell carriers for the repair and regeneration of tissues is receiving increased attention. We have investigated extracellular matrix formed by osteoblasts in vitro as a scaffold for osteoblasts transplantation and found a mineralized matrix, formed by human osteoblasts in vitro, can initiate bone formation by activating endogenous mesenchymal cells. To repair the large bone defects, osteogenic or stem cells need to be prefabricated in a large three dimensional scaffold usually made of synthetic biomaterials, which have inadequate interaction with cells and lead to in vivo foreign body reactions. The interstitial extracellular matrix has been applied to modify biomaterials surface and identified vitronectin, which binds the heparin domain and RGD (Arg-Gly-Asp) sequence can modulate cell spreading, migration and matrix formation on biomaterials. We also synthesized a tri-block copolymer, methoxy-terminated poly(ethylene glycol)(MPEG)-polyL-lactide(PLLA)-polylysine(PLL) for human osteoblasts delivery. We identified osteogenic activity can be regulated by the molecular weight and composition of the triblock copolymers. Due to the sequential loss of lineage differentiation potential during the culture of bone marrow stromal cells that hinderers their potential clinical application, we have developed a clonal culture system and established several stem cell clones with fast growing and multi-differentiation properties. Using proteomics and subtractive immunization, several differential proteins have been identified and verified their potential application in stem cell characterization and tissue regeneration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem-cell mediated therapies for fracture and other orthopaedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of simulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase (ALP) activity and extracellular matrix mineralization. Furthermore, similar DMSO mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1 we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased ALP activity and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. Flow on knockdown of bone specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, attempts to regenerate a complete tooth, including the critical periodontal tissues associated with the tooth root, have not been successful. Controversy still exists regarding the origin of the cell source for cellular cementum (epithelial or mesenchymal). This disagreement may be partially due to a lack of understanding of the events leading to the initiation and development of the tooth roots and supportive tissues, such as the cementum. Osterix (OSX) is a transcriptional factor essential for osteogenesis, but its role in cementogenesis has not been addressed. In the present study, we first documented a close relationship between the temporal- and spatial-expression pattern of OSX and the formation of cellular cementum. We then generated 3.6 Col 1-OSX transgenic mice, which displayed accelerated cementum formation vs. WT controls. Importantly, the conditional deletion of OSX in the mesenchymal cells with two different Cre systems (the 2.3 kb Col 1 and an inducible CAG-CreER) led to a sharp reduction in cellular cementum formation (including the cementum mass and mineral deposition rate) and gene expression of dentin matrix protein 1 (DMP1) by cementocytes. However, the deletion of the OSX gene after cellular cementum formed did not alter the properties of the mature cementum as evaluated by backscattered SEM and resin-cast SEM. Transient transfection of Osx in the cementoblasts in vitro significantly inhibited cell proliferation and increased cell differentiation and mineralization. Taken together, these data support 1) the mesenchymal origin of cellular cementum (from PDL progenitor cells); 2) the vital role of OSX in controlling the formation of cellular cementum; and 3) the limited remodeling of cellular cementum in adult mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: One of the challenges associated with cell-based therapies for repairing the retina is the development of suitable materials on which to grow and transplant retinal cells. Using the ARPE-19 cell line, we have previously demonstrated the feasibility of growing RPE-derived cells on membranes prepared from the silk protein fibroin. The present study was aimed at developing a porous, ultra-thin fibroin membrane that might better support development of apical-basal polarity in culture, and to extend this work to primary cultures of human RPE cells. Methods: Ultra-thin fibroin membranes were prepared using a highly polished casting table coated with Topas® (a cyclic olefin copolymer) and a 1:0.03 aqueous solution of fibroin and PEO (Mv 900 000 g/mol). Following drying, the membranes were water annealed to make them water-stable, washed in water to remove PEO, sterilised by treatment with 95% ethanol, and washed extensively in saline. Primary cultures containing human RPE cells were established from donor posterior eye cups and maintained in DMEM/F12 medium supplemented with 10% fetal bovine serum and antibiotics. First passage cultures were seeded onto fibroin membranes pre-coated with vitronectin and grown for 6 weeks in medium supplemented with 1% serum. Comparative cultures were established on porous 1.0 µm pore PET membrane (Millipore) and using ARPE-19 cells. Results: The fibroin membranes displayed an average thickness of 3 µm and contained numerous dimples/pore-like structures of up to 3-5 µm in diameter. The primary cultures predominantly contained pigmented epithelial cells, but mesenchymal cells (presumed fibroblasts) were also often present. Passaged cultures appeared to attach equally well to either fibroin or PET membranes. Over time cells on either material adopted a more cobblestoned morphology. Conclusions: Progress has been made towards developing a porous ultra-thin fibroin membrane that supports cultivation of RPE cells. Further studies are required to determine the degree of membrane permeability and RPE polarity.