940 resultados para medical image segmentation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an information theoretic framework for image segmentation is presented. This approach is based on the information channel that goes from the image intensity histogram to the regions of the partitioned image. It allows us to define a new family of segmentation methods which maximize the mutual information of the channel. Firstly, a greedy top-down algorithm which partitions an image into homogeneous regions is introduced. Secondly, a histogram quantization algorithm which clusters color bins in a greedy bottom-up way is defined. Finally, the resulting regions in the partitioning algorithm can optionally be merged using the quantized histogram

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesis se centra en la Visin por Computador y, ms concretamente, en la segmentacin de imgenes, la cual es una de las etapas bsicas en el anlisis de imgenes y consiste en la divisin de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la informacin de regin y de frontera durante el proceso de segmentacin, integracin que permite paliar algunos de los problemas bsicos de la segmentacin tradicional. La informacin de frontera permite inicialmente identificar el nmero de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadsticamente las caractersticas de las regiones y definir de esta forma la informacin de regin. Esta informacin, conjuntamente con la informacin de frontera, es utilizada en la definicin de una funcin de energa que expresa las propiedades requeridas a la segmentacin deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los lmites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los pxeles de la imagen, con el objetivo de optimizar la funcin de energa o, en otras palabras, encontrar la segmentacin que mejor se adecua a los requerimientos exprsados en dicha funcin. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentacin y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentacin de texturas, lo que implica algunas consideraciones bsicas como el modelaje de las regiones a partir de un conjunto de caractersticas de textura y la extraccin de la informacin de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensin a la segmentacin de imgenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de tcnicas no-paramtricas de estimacin de la funcin de densidad para la descripcin del color, y de caractersticas textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas tcnicas de integracin utilizando imgenes sintticas. Adems, se han incluido experimentos con imgenes reales con resultados muy positivos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on image processing has shown that combining segmentation methods may lead to a solid approach to extract semantic information from different sort of images. Within this context, the Normalized Cut (NCut) is usually used as a final partitioning tool for graphs modeled in some chosen method. This work explores the Watershed Transform as a modeling tool, using different criteria of the hierarchical Watershed to convert an image into an adjacency graph. The Watershed is combined with an unsupervised distance learning step that redistributes the graph weights and redefines the Similarity matrix, before the final segmentation step using NCut. Adopting the Berkeley Segmentation Data Set and Benchmark as a background, our goal is to compare the results obtained for this method with previous work to validate its performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. Springer-Verlag 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio dellintelligenza artificiale si pone come obiettivo la risoluzione di una classe di problemi che richiedono processi cognitivi difficilmente codificabili in un algoritmo per essere risolti. Il riconoscimento visivo di forme e figure, linterpretazione di suoni, i giochi a conoscenza incompleta, fanno capo alla capacit umana di interpretare input parziali come se fossero completi, e di agire di conseguenza. Nel primo capitolo della presente tesi sar costruito un semplice formalismo matematico per descrivere latto di compiere scelte. Il processo di apprendimento verr descritto in termini della massimizzazione di una funzione di prestazione su di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale ad un insieme finito e discreto di scelte, tramite un set di addestramento che descrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce di questo formalismo, alcune delle pi diffuse tecniche di artificial intelligence, e saranno evidenziate alcune problematiche derivanti dalluso di queste tecniche. Nel secondo capitolo lo stesso formalismo verr applicato ad una ridefinizione meno intuitiva ma pi funzionale di funzione di prestazione che permetter, per un ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del vettore nello spazio dei parametri che individua il massimo assoluto della funzione di prestazione. La soluzione di questo set di equazioni sar trattata grazie al teorema delle contrazioni. Una naturale generalizzazione polinomiale verr inoltre mostrata. Nel terzo capitolo verranno studiati pi nel dettaglio alcuni esempi a cui quanto ricavato nel secondo capitolo pu essere applicato. Verr introdotto il concetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorgimenti prestazionali, quali leliminazione degli zeri, la precomputazione analitica, il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti scalari ad alta dimensionalit. Verranno infine introdotti i problemi a scelta unica, ossia quella classe di problemi per cui possibile disporre di un set di addestramento solo per una scelta. Nel quarto capitolo verr discusso pi in dettaglio un esempio di applicazione nel campo della diagnostica medica per immagini, in particolare verr trattato il problema della computer aided detection per il rilevamento di microcalcificazioni nelle mammografie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The task considered in this paper is performance evaluation of region segmentation algorithms in the ground-truth-based paradigm. Given a machine segmentation and a ground-truth segmentation, performance measures are needed. We propose to consider the image segmentation problem as one of data clustering and, as a consequence, to use measures for comparing clusterings developed in statistics and machine learning. By doing so, we obtain a variety of performance measures which have not been used before in image processing. In particular, some of these measures have the highly desired property of being a metric. Experimental results are reported on both synthetic and real data to validate the measures and compare them with others.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal image analysis and computer assisted intervention have emerged as new and independent research areas, due to the importance of treatment of spinal diseases, increasing availability of spinal imaging, and advances in analytics and navigation tools. Among others, multiple modality spinal image analysis and spinal navigation tools have emerged as two keys in this new area. We believe that further focused research in these two areas will lead to a much more efficient and accelerated research path, avoiding detours that exist in other applications, such as in brain and heart.