997 resultados para mechanical cycling


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective. To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP)Methods. Sixty disc-shaped specimens (0, 12 mm; thickness, 1.6 mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8 Hz/200N); (T) thermal cycling (6,000 cycles/5-55 degrees C/30 s); (TM) thermomechanical cycling (1,200,000 cycles/3.8 Hz/200N with temperature range from 5 C to 55 C for 60s each); (AUT) 12h in autoclave at 134 degrees C/2 bars; and (STO) storage in distilled water (37 degrees C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1 mm/min, load 100 kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (alpha = 0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests.Results. ANOVA revealed that flexural strength was affected by the aging procedures (p = 0.002). The M (781.6 MPa) and TM (771.3 MPa) groups presented lower values of flexural strength than did C (955 MPa), AUT (955.8 MPa), T (960.8 MPa) and STO (910.4 MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p = 0.004). In addition, the surface roughnesses were similar among the groups (p = 0.165).Signcance. Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study the effects of thermal and mechanical cycles on the hardness and roughness of artificial teeth were evaluated. Materials and Methods:Specimens were prepared and stored in distilled water at 37ºC for 48 hours (n=10).The hardness and roughness readings were made in the following time intervals, according to each group:G1: after specimen storage in distilled water at 37°C for 48 hours; G2: after 600.000 constant mechanical cycles; G3: after 1.200.000 constant mechanical cycles; G4: after 2.500 thermalcycling baths, alternated between hot water (55°C) and cold water (5°C) and G5: after 5.000 thermalcycling baths, alternated between hot water (55°C) and cold water (5°C). After cycling and storage procedures, the specimens of each group were submittedto surface roughness and hardness readouts. Statistical evaluation was performed by three-way analysis of variance, complemented by the Tukey multiple comparisons of means test. The level of significance adopted was 5%. There was no significant difference between G1, G4 and G5 as regards mean roughness of different brands of artificial teeth. Groups G2 and G3 showed higher mean roughness values, and generally equivalent values in all time intervals, except for Trilux (G3> G2). Significant differences in hardness values were observed in different brands of artificial teeth, and differences in values after thermal and mechanical cycling. In conclusion, our findings suggest that thermal cyclingdid not change the roughness of the artificial teeth tested, but after the mechanical cycling the roughness values increased. Thermal and mechanical cycling influenced the hardness of the artificial teeth tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solder joints in electronic packages undergo thermo-mechanical cycling, resulting in nucleation of micro-cracks, especially at the solder/bond-pad interface, which may lead to fracture of the joints. The fracture toughness of a solder joint depends on material properties, process conditions and service history, as well as strain rate and mode-mixity. This paper reports on a methodology for determining the mixed-mode fracture toughness of solder joints with an interfacial starter-crack, using a modified compact mixed mode (CMM) specimen containing an adhesive joint. Expressions for stress intensity factor (K) and strain energy release rate (G) are developed, using a combination of experiments and finite element (FE) analysis. In this methodology, crack length dependent geometry factors to convert for the modified CMM sample are first obtained via the crack-tip opening displacement (CTOD)-based linear extrapolation method to calculate the under far-field mode I and II conditions (f(1a) and f(2a)), (ii) generation of a master-plot to determine a(c), and (iii) computation of K and G to analyze the fracture behavior of joints. The developed methodology was verified using J-integral calculations, and was also used to calculate experimental fracture toughness values of a few lead-free solder-Cu joints. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in prediction the transformation behavior of a SMA (Cu-Al-Zn-Mn) under complex thermomechanical load (including complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of the shape memory alloy NiTi in micro-electro-mechanical-systems (MEMSs) is extensive nowadays. In MEMS, complex while precise motion control is always vital. This makes the degradation of the functional properties of NiTi during cycling loading such as the appearance of residual strain become a serious problem to study, in particular for laser micro-welded NiTi in real applications. Although many experimental efforts have been put to study the mechanical properties of laser welded NiTi, surprisingly, up to the best of our understanding, there has not been attempts to quantitatively model the laser-welded NiTi under mechanical cycling in spite of the accurate prediction required in applications and the large number of constitutive models to quantify the thermo-mechanical behavior of shape memory alloys. As the first attempt to fill the gap, we employ a recent constitutive model, which describes the localized SIMT in NiTi under cyclic deformation; with suitable modifications to model the mechanical behavior of the laser welded NiTi under cyclic tension. The simulation of the model on a range of tensile cyclic deformation is consistent with the results of a series of experiments. From this, we conclude that the plastic deformation localized in the welded regions (WZ and HAZs) of the NiTi weldment can explain most of the extra amount of residual strain appearing in welded NiTi compared to the bare one. Meanwhile, contrary to common belief, we find that the ability of the weldment to memorize its transformation history, sometimes known as ‘return point memory’, still remains unchanged basically though the effective working limit of this ability reduces to within 6% deformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the root fracture strength of human single-rooted premolars restored with customized fiberglass post-core systems after fatigue simulation. Methods: 40 human premolars had their crowns cut and the root length was standardized to 13 mm. The teeth were endodontically treated and embedded in acrylic resin. The specimens were distributed into four groups (n=10) according to the restorative material used: prefabricated fiber post (PFP), PFP+accessory fiber posts (PFPa), PFP+unidirectional fiberglass (PFPf), and unidirectional fiberglass customized post (CP). All posts were luted using resin cement and the cores were built up with a resin composite. The samples were stored for 24 hours at 37 degrees C and 100% relative humidity and then submitted to mechanical cycling. The specimens were then compressive-loaded in a universal testing machine at a crosshead speed of 0.5 mm/minute until fracture. The failure patterns were analyzed and classified. Data was submitted to one-way ANOVA and Tukey's test (alpha= 0.05). Results: The mean values of maximum load (N) were: PFP - 811.4 +/- 124.3; PFPa - 729.2 +/- 157.2; PFPf - 747.5 +/- 204.7; CP - 762.4 +/- 110. Statistical differences were not observed among the groups. All groups showed favorable restorable failures. Fiberglass customized post did not show improved fracture resistance or differences in failure patterns when compared to prefabricated glass fiber posts. (Am J Dent 2012;25:35-38).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength.Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey's test (alpha = 0.05).Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted.Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate the influence of three adhesive systems on the bond strength of fiber post luted to root dentine. The hypothesis was that the bond strength is influenced by the adhesive system. Method: The canals of thirty single-root bovine roots (16mm in length) were prepared using the preparation drill (FGM) until 12mm. 14 mm of each root was embedded with acrylic resin and the specimens were allocated into three groups (n=10), considering the factor adhesive (3 levels): Gr1- Scotchbond Multipurpose Plus (3M ESPE), Gr2- One Step (Bisco) and Gr3- Excite DSC (Ivoclar Vivadent). The adhesive systems were applied using a microbrush, according to the manufacture's recommendations. The fiber posts (White Post DC, FGM) were luted with dual resin cement (All-Cem,FGM). After, the cores with composite resin (Llis, FGM) were made and each set of root/post/core was submitted to the mechanical cycling (Erios, Brazil) (10 6 cycles, 84N, 4 Hz, inclination of 45 o, 37 oC, water). Each specimen was cut in 4 samples (1.8mm in thickness), which were submitted to the push-out test in a universal testing machine (ServoPulser - Shimadzu) (50Kgf, 1mm/min). The data (MPa) were analyzed using ANOVA (1-way) and Tukey test (5%). Results: The factor adhesive (P=0.00352) influenced the bond strength significantly (ANOVA). Gr1 (6.8±3.8 MPa) a presented higher bond strength values than Gr2 (3.1±1.5 MPa) b and similar to Gr3 (4.4±3.3) a,b. Moreover, Gr3 and Gr2 were similar between them (Tukey). The hypothesis was accepted. Conclusion: Based on the results it was concluded that chemical and dual polymerization adhesive system should be used for the adhesive luting fiber post procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate the effects of simulated aging in bond strength and nanoleakage of class II restorations using three different restorative techniques. Materials and methods: Class II preparations (n = 12) were restored using: FS - composite resin Filtek Supreme Plus (3M/ESPE); RMGIC + FS - resin-modified glass ionomer cement Vitrebond Plus (3M/ESPE) + FS; and FFS + FS - flowable composite resin Filtek Supreme Plus Flowable (3M ESPE) + FS. The teeth were assigned into two groups: Control and Simulated Aging - Thermal/Mechanical cycling (3,000 cycles, 20-80 °C/500,000 cycles, 50 N). From each tooth, two slabs were assessed to microtensile bond strength test (μTBS) (MPa), and two slabs were prepared for nanoleakage assessment, calculated as penetration along the restoration margin considering the penetration length (%) and as the area of silver nitrate particle deposition (μm2). Data were analyzed by two-way analysis of variance (ANOVA) followed by Tukey's post hoc test (p < 0. 05). Results: FS presented the highest μTBS to dentin (22. 39 ± 7. 55 MPa) after simulated aging, while the presence of flowable resin significantly decreased μTBS (14. 53 ± 11. 65 MPa) when compared to no aging condition. Both control and aging groups of RMGIC + FS presented the highest values of silver nitrate penetration (89. 90 ± 16. 31 % and 97. 14 ± 5. 76 %) and deposition area (33. 05 ± 12. 49 and 28. 08 ± 9. 76 μm2). Nanoleakage was not affected by simulated aging. Conclusions: FS presented higher bond strength and lower nanoleakage and was not affected by simulated aging. Use of flowable resin compromised the bond strength after simulated aging. Clinical relevance: The use of an intermediate layer did not improve the dentin bond strength neither reduced nanoleakage at the gingival margins of class II restorations under simulated aging conditions. © 2012 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To evaluate the effects of surface treatment, surface hydration (SH) and application method (AM) on the tensile bond strength of the Silorane Adhesive System (SAS) to dentine. Methods: Ninety bovine teeth were used. For the control group (n = 10), each dentine surface was treated according to the manufacturer's instructions of the SAS. The remaining teeth were randomly distributed into two groups (n = 40), according to the type of dentine surface treatment (ST) - 37% phosphoric acid or Er:YAG Laser prior to the application of the SAS. Each group was further divided into 2 subgroups (n = 20), according to the SH status: dry (D) or wet (W). Each subgroup was further divided into 2 subgroups (n = 10), according to the application method [AM: Active (AC) mode or Passive (PA) mode]. A coat of resin composite (Filtek P90) was applied on the surface. Artificial ageing was performed with a thermo-mechanical cycling machine. The specimens were sectioned into 1 mm × 1 mm × 10 mm sticks and stressed to failure using a universal testing machine. The remaining teeth in each group were used for Scanning Electron Microscopy to examine the fractured area. Data were subjected to a three-way ANOVA, Tukey's test and Dunnet's test (α = 0.05). Results: The ANOVA showed significant differences for SH and AM, but not for ST. For SH, the results of Tukey's test were (in MPa): D-14.9(±3.8)a, W-17.1(±4.3)b; and for AM: PA-14. 9(±4.2)a, AC-17.1(±3.9) b. Conclusions: Acid etching, when combined with a moist dentine surface and the use of primer agitation, improves the bond strength of the SAS to dentine. Clinical Significance: According to the results of the present in vitro study, modification of the application protocols for the silorane-based adhesive system may improve its clinical performance. © 2012 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)