975 resultados para means clustering


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, an interactive Content-Based Image Retrieval (CBIR) system that allows searching and retrieving images from databases is designed and developed. Based on the fuzzy c-means clustering algorithm, the CBIR system fuses color and texture features in image segmentation. A technique to form compound queries based on the combined features of different images is devised. This technique allows users to have a better control on the search criteria, thus a higher retrieval performance can be achieved. A database consisting of skin cancer imagery is used to demonstrate the applicability of the CBIR system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When no prior knowledge is available, clustering is a useful technique for categorizing data into meaningful groups or clusters. In this paper, a modified fuzzy min-max (MFMM) clustering neural network is proposed. Its efficacy for tackling power quality monitoring tasks is demonstrated. A literature review on various clustering techniques is first presented. To evaluate the proposed MFMM model, a performance comparison study using benchmark data sets pertaining to clustering problems is conducted. The results obtained are comparable with those reported in the literature. Then, a real-world case study on power quality monitoring tasks is performed. The results are compared with those from the fuzzy c-means and k-means clustering methods. The experimental outcome positively indicates the potential of MFMM in undertaking data clustering tasks and its applicability to the power systems domain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salamanca has been considered among the most polluted cities in Mexico. The vehicular park, the industry and the emissions produced by agriculture, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Particulate Matter less than 10 μg/m3 in diameter (PM10). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables (wind speed, wind direction, temperature and relative humidity) and air pollutant concentrations of PM10. Before the prediction, Fuzzy c-Means clustering algorithm have been implemented in order to find relationship among pollutant and meteorological variables. These relationship help us to get additional information that will be used for predicting. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of PM10 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results shown that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present an efficient k-Means clustering algorithm for two dimensional data. The proposed algorithm re-organizes dataset into a form of nested binary tree*. Data items are compared at each node with only two nearest means with respect to each dimension and assigned to the one that has the closer mean. The main intuition of our research is as follows: We build the nested binary tree. Then we scan the data in raster order by in-order traversal of the tree. Lastly we compare data item at each node to the only two nearest means to assign the value to the intendant cluster. In this way we are able to save the computational cost significantly by reducing the number of comparisons with means and also by the least use to Euclidian distance formula. Our results showed that our method can perform clustering operation much faster than the classical ones. © Springer-Verlag Berlin Heidelberg 2005

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anomaly detection as a kind of intrusion detection is good at detecting the unknown attacks or new attacks, and it has attracted much attention during recent years. In this paper, a new hierarchy anomaly intrusion detection model that combines the fuzzy c-means (FCM) based on genetic algorithm and SVM is proposed. During the process of detecting intrusion, the membership function and the fuzzy interval are applied to it, and the process is extended to soft classification from the previous hard classification. Then a fuzzy error correction sub interval is introduced, so when the detection result of a data instance belongs to this range, the data will be re-detected in order to improve the effectiveness of intrusion detection. Experimental results show that the proposed model can effectively detect the vast majority of network attack types, which provides a feasible solution for solving the problems of false alarm rate and detection rate in anomaly intrusion detection model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous user authentication with keystroke dynamics uses characters sequences as features. Since users can type characters in any order, it is imperative to find character sequences (n-graphs) that are representative of user typing behavior. The contemporary feature selection approaches do not guarantee selecting frequently-typed features which may cause less accurate statistical user-representation. Furthermore, the selected features do not inherently reflect user typing behavior. We propose four statistical based feature selection techniques that mitigate limitations of existing approaches. The first technique selects the most frequently occurring features. The other three consider different user typing behaviors by selecting: n-graphs that are typed quickly; n-graphs that are typed with consistent time; and n-graphs that have large time variance among users. We use Gunetti’s keystroke dataset and k-means clustering algorithm for our experiments. The results show that among the proposed techniques, the most-frequent feature selection technique can effectively find user representative features. We further substantiate our results by comparing the most-frequent feature selection technique with three existing approaches (popular Italian words, common n-graphs, and least frequent ngraphs). We find that it performs better than the existing approaches after selecting a certain number of most-frequent n-graphs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of distribution utilities do not have accurate information on the constituents of their loads. This information is very useful in managing and planning the network, adequately and economically. Customer loads are normally categorized in three main sectors: 1) residential; 2) industrial; and 3) commercial. In this paper, penalized least-squares regression and Euclidean distance methods are developed for this application to identify and quantify the makeup of a feeder load with unknown sectors/subsectors. This process is done on a monthly basis to account for seasonal and other load changes. The error between the actual and estimated load profiles are used as a benchmark of accuracy. This approach has shown to be accurate in identifying customer types in unknown load profiles, and is used in cross-validation of the results and initial assumptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly sensitive infrared (IR) cameras provide high-resolution diagnostic images of the temperature and vascular changes of breasts. These images can be processed to emphasize hot spots that exhibit early and subtle changes owing to pathology. The resulting images show clusters that appear random in shape and spatial distribution but carry class dependent information in shape and texture. Automated pattern recognition techniques are challenged because of changes in location, size and orientation of these clusters. Higher order spectral invariant features provide robustness to such transformations and are suited for texture and shape dependent information extraction from noisy images. In this work, the effectiveness of bispectral invariant features in diagnostic classification of breast thermal images into malignant, benign and normal classes is evaluated and a phase-only variant of these features is proposed. High resolution IR images of breasts, captured with measuring accuracy of ±0.4% (full scale) and temperature resolution of 0.1 °C black body, depicting malignant, benign and normal pathologies are used in this study. Breast images are registered using their lower boundaries, automatically extracted using landmark points whose locations are learned during training. Boundaries are extracted using Canny edge detection and elimination of inner edges. Breast images are then segmented using fuzzy c-means clustering and the hottest regions are selected for feature extraction. Bispectral invariant features are extracted from Radon projections of these images. An Adaboost classifier is used to select and fuse the best features during training and then classify unseen test images into malignant, benign and normal classes. A data set comprising 9 malignant, 12 benign and 11 normal cases is used for evaluation of performance. Malignant cases are detected with 95% accuracy. A variant of the features using the normalized bispectrum, which discards all magnitude information, is shown to perform better for classification between benign and normal cases, with 83% accuracy compared to 66% for the original.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.