995 resultados para magnetic targeting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis is a significant human pathogen with potentially severe disease sequelae in the genital tract, including infertility. A successful vaccine will need to effectively target immunity to the genital mucosa. Intranasal immunisation with cholera toxin (CT) can target immunity to the genital tract, but has the potential to cause neurological side effects. CTA1-DD is a non-toxic potent mucosal adjuvant which combines the enzymatic properties of CT, with a B cell targeting moiety. Here, we demonstrate that intranasal immunisation with CTA1-DD and chlamydial Major Outer Membrane Protein (MOMP) results in the induction of neutralising systemic and mucosal antibodies, and reduces the level of chlamydial shedding following intravaginal challenge with Chlamydia muridarum. Thus, CTA1-DD is an effective adjuvant for vaccine development against Chlamydia trachomatis, and possibly also a range of other genital pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence supports that prostate cancer originates from a rare sub-population of cells, namely prostate cancer stem cells (CSCs). Conventional therapies for prostate cancer are believed to mainly target the majority of differentiated tumor cells but spare CSCs, which may account for the subsequent disease relapse after treatment. Therefore, successful elimination of CSCs may be an effective strategy to achieve complete remission from this disease. Gamma-tocotrienols (-T3) is one of the vitamin-E constituents which have been shown to have anticancer effects against a wide-range of human cancers. Recently, we have reported that -T3 treatment not only inhibits prostate cancer cell invasion but also sensitizes the cells to docetaxel-induced apoptosis, suggesting that -T3 may be an effective therapeutic agent against advanced stage prostate cancer. Here, we demonstrate for the first time that -T3 can down-regulate the expression of prostate CSC markers (CD133/CD44) in androgen independent (AI) prostate cancer cell lines (PC-3 & DU145), as evident from western blotting analysis. Meanwhile, the spheroid formation ability of the prostate cancer cells was significantly hampered by -T3 treatment. In addition, pre-treatment of PC-3 cells with -T3 was found to suppress tumor initiation ability of the cells. More importantly, while CD133-enriched PC-3 cells were highly resistant to docetaxel treatment, these cells were as sensitive to -T3 treatment as the CD133-depleted population. Our data suggest that -T3 may be an effective agent in targeting prostate CSCs, which may account for its anticancer and chemosensitizing effects reported in previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of themagnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of ±0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar magnetic elements are becoming a replacement for their conventional rivals. Among the reasons supporting their application, is their smaller size. Taking less bulk in the electronic package is a critical advantage from the manufacturing point of view. The planar structure consists of the PCB copper tracks to generate the desired windings .The windings on each PCB layer could be connected in various ways to other winding layers to produce a series or parallel connection. These windings could be applied coreless or with a core depending on the application in Switched Mode Power Supplies (SMPS). Planar shapes of the tracks increase the effective conduction area in the windings, brings about more inductance compared to the conventional windings with the similar copper loss case. The problem arising from the planar structure of magnetic inductors is the leakage current between the layers generated by a pulse width modulated voltage across the inductor. This current value relies on the capacitive coupling between the layers, which in its turn depends on the physical parameters of the planar scheme. In order to reduce this electrical power dissipation due to the leakage current and Electromagnetic Interference (EMI), reconsideration in the planar structure might be effective. The aim of this research is to address problem of these capacitive coupling in planar layers and to find out a better structure for the planar inductance which offers less total capacitive coupling and thus less thermal dissipation from the leakage currents. Through Finite Element methods (FEM) several simulations have been carried out for various planar structures. The labs prototypes of these structures are built with the similar specification of the simulation cases. The capacitive couplings of the samples are determined with Spectrum Analyser whereby the test analysis verified the simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scaling to characterize unsteady boundary layer development for thermo-magnetic convection of paramagnetic fluids with the Prandtl number greater than one is developed. Under the consideration is a square cavity with initially quiescent isothermal fluid placed in microgravity condition (g = 0) and subject to a uniform, vertical gradient magnetic field. A distinct magnetic thermal-boundary layer is produced by sudden imposing of a higher temperature on the vertical sidewall and as an effect of magnetic body force generated on paramagnetic fluid. The transient flow behavior of the resulting boundary layer is shown to be described by three stages: the start-up stage, the transitional stage and the steady state. The scaling is verified by numerical simulations with the magnetic momentum parameter m variation and the parameter γRa variation.