1000 resultados para luminescence mechanism
Resumo:
The upconversion properties of Er3+/Yb3+ codoped tellurite glasses and glass fibers with D-shape cladding under 980 mu excitation were investigated. Intense emission bands centered at 531, 546 and 658 nm corresponding to the transitions Er3+: H-2(11/2) -> I-4(15/2) , S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. Compared with that in Er3+/Yb3+ codoped tellurite bulk glass, the upconversion luminescence becomes more efficient in the fiber geometry. The dependence of upconversion intensities on fiber geometry and possible upconversion mechanism are discussed and evaluated. The presented Er3+/Yb3+ codoped tellurite fibers with intense upconversion luminescence can be used as potential host materials for upconversion fiber lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Novel oxyfluoride glasses are developed with the composition of 30SiO(2)-15Al(2)O(3)-28PbF(2)-22CdF(2)-0.1TmF(3)-xYbF(3) -(4.9-x) AlF3(x = 0, 0.5, 1.0, 1.5, 2.0) in mol fraction. Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and bear infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm3+: D-1(2) -> F-3(4), (1)G(4) -> H-3(6), (1)G(4) -> F-3(4), and H-3(4) -> H-3(6), respectively, are observed. Due to the sensitization of Yb3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.
Resumo:
Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce3+ ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce3+ ions. The relationship between the intensity of the Ce3+ emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.
Resumo:
The near-infrared emission intensity of Ni2+ in Yb3+/Ni2+ codoped transparent MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics could be enhanced up to 4.4 times via energy transfer from Yb3+ to Ni2+ in nanocrystals. The best Yb2O3 concentration was about 1.00 mol%. For the Yb3+/Ni2+ codoped glass ceramic with 1.00 mol% Yb2O3, a broadband near-infrared emission centered at 1265 nm with full width at half maximum of about 300 nm and lifetime of about 220 mu s was observed. The energy transfer mechanism was also discussed. (C) 2008 Optical Society of America.
Resumo:
Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2S3 chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS(2)-20Ga(2)S(3):0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2-Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.
Resumo:
Infrared (1.2-1.6 mum) luminescence in a yttrium aluminium garnet (YAG) crystal, co-doped with Yb (10 at.%) and Cr (0.05 at.%) ions, was investigated under CW laser diode pumping (lambda = 940 nm). The Cr4+ emission band was observed with its peak at 1.35 mum and measured to be about 6% with respect to Yb3+ IR luminescence (lambda = 1.03 mum). Analysis of the crystal absorption and luminescence spectra allows one to conclude that Yb3+-Cr4+ energy transfer is a mechanism responsible for the B-3(2)(T-3(2))-B-3(1)((3)A(2)) emission of Cr4+ ions. This crystal is promising as an efficient source of the near infrared emission. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d -> 4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism. (c) 2006 Optical Society of America.
Resumo:
alpha-Al2O3:C crystal shows excellent thermoluminescence (TL) and optically stimulated luminescence (OSL) properties but the real role carbon plays in this crystal is still not clearly understood so far. In this work, alpha-Al2O3:C crystal doping with different amounts of carbon were grown by the temperature gradient technique, and TL and OSL properties of as-grown crystals were investigated. Additionally, a mechanism was proposed to explain the role of carbon in forming the TL and OSL properties of alpha-Al2O3:C. TL and OSL intensities of as-grown crystals increase with the increasing amount of carbon doping in the crystal, but no shift is found in the glow peak location at 465 K. As the amount of carbon doping in the crystals decreases, OSL decay rate becomes faster. With the increase in heating rate, the integral TL response of as-grown crystals decreases and glow peak shifts to higher temperatures. TL response decrease rate increases with the increasing amount of carbon doping in the crystals. All the TL and OSL response curves of as-grown crystals show linear-sublinear-saturation characteristic, and OSL dose response exhibits higher sensitivity and wider linear dose range than that of TL. The crystal doping with 5000 ppm carbon shows the best dosimetric properties. Carbon plays the role of a dopant in alpha-Al2O3:C crystal and four-valent carbon anions replace the two-valent anions of oxygen during the crystal growth process, and large amounts of oxygen vacancies were formed, which corresponds to the high absorption coefficient of F and F+ centers in the crystals.
Resumo:
Electrochemical investigations were conducted of the effect of potential on the luminescence of porous silico (PS). The use of liquid contacts allows the potential to be controlled during studies of the photoluminescence (PL) and electroluminescence (EI). The PL and EL of PS samples prepared from n-type substrates is considered. To obtain luminescence from such PS it is necessary to generate holes in the valence band. This is achieved by either photoexcitation or an electrochemical process involving the reduction of persulfate. This paper describes the investigations of the effect of potential on the PL and EL of PS. A mechanism of 'potential tuning' based on electron occupancy and Auger quenching is then proposed.
Resumo:
Thermal annealing of GaInAs/GaNAs quantum wells (QWs) as well as other nitrogen- and indium-contained QW structures grown by molecular beam epitaxy and its effect on optical properties are investigated. The photoluminescence (PL) and photovoltaic (PV) spectra of annealed GaInAs/GaNAs QWs show that the luminescence properties become degraded due to the N diffusion from the GaNAs barrier layers to the GaInAs well layer. Meantime, the annealing-induced blueshift of the PL peak in this QW system is mainly induced by the change of In distribution, suggesting that the In reorganization is greatly assisted by the N-induced defects. The elucidation of annealing effect in GaInAs/GaNAs QW samples is helpful for a better understanding to the annealing effect in the GaInNAs/GaAs QWs. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
SiO2/Si/SiO2 nanometer double barriers (SSSNDB) with Si layers of twenty-seven different thicknesses in a range of 1-5 nm with an interval of 0.2 nm have been deposited on p-Si substrates using two-target alternative magnetron sputtering. Electroluminescence (EL) from the semitransparent Au film/SSSNDB/p-Si diodes and from a control diode without any Si layer have been observed under forward bias. Each EL spectrum of all these diodes can be fitted by two Gaussian bands with peak energies of 1.82 and 2.25 eV, and full widths at half maximum of 0.38 and 0.69 eV, respectively. It is found that the current, EL peak wavelength and intensities of the two Gaussian bands of the Au/SSSNDB/p-Si structure oscillate synchronously with increasing Si layer thickness with a period corresponding to half a de Broglie wavelength of the carriers. The experimental results strongly indicate that the EL originates mainly from two types of luminescence centres with energies of 1.82 and 2.25 eV in the SiO2 barriers, rather than from the nanometer Si well in the SSSNDB. The EL mechanism is discussed in detail.
Influence of dual incorporation of In and N on the luminescence of GaInNAs/GaAs single quantum wells
Resumo:
The optical properties of above- and below-band-edge transitions have been investigated by incorporating In atoms into GaNAs/GaAs single quantum wells. The experimental results show that with increasing In concentration the interband luminescence is improved and the luminescence intensity below the band edge in GaInNAs/GaAs decreases significantly. An interpretation is given that N atoms are preferable to form a covalent bond with In than with Ga atoms in a GaInNAs alloy, due to the compensation of the atomic-size difference between In and N atoms on the GaAs substrate. The photoreflectance spectra of the GaInNAs/GaAs single quantum well support the assignment of an intrinsic mechanism to the high-energy luminescence peak. (C) 2000 American Institute of Physics. [S0003- 6951(00)01752-6].
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The photo- and thermo-stimulated luminescence (PSL and TSL) of BaFCl0.8Br0.2:Sm2+,Sm3+ phosphors were investigated. It is found that the stimulated luminescence intensity of Sm2+ is almost equal to that of Sm3+ even if the content of Sm2+ is much lower than that of Sm3+. Only the stimulated luminescence of Sm2+ is observed in the sample in which the content of Sm2+ is much higher than Sm3+, demonstrating that the PSL or TSL efficiency of Sm2+ is much higher than that of Sm3+. This is attributed to the effective overlap of the e-h emission with the absorption of Sm2+ centers which may make the energy transfer from the electron-hole pairs to Sm2+ effectively. In BaFCl0.8Br0.2:Sm2+,Sm3+ the stimulated luminescence is considered to be occurred via the recombination of photoreleased electrons with the [Sm2+ + h] or [Sm3+ + h] complex and the energy transfer from the electron-hole pairs to the luminescence centers (Sm2+ and Sm3+) is concerned to be the major step to determine the stimulated luminescence efficiency. The X-ray-induced stimulated luminescence is compared and connected to the photon gated hole burning. The net result of the two processes is quite similar and may be comparable. It is suggested from the observations of stimulated luminescence that electron migration between Sm2+ and Sm3+ is not the major process, color centers may play an important role in hole burning. The information from stimulated luminescence is helpful for the understanding of the hole burning mechanism. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Three new absorption bands, appearing around 670, 865 and 980 nm, are observed in BaFCl:Eu2+ phosphors. They are ascribed to F aggregates formed by association of F centers or by trapping of electrons to the primary F-n(+) (n = 2,3,4) centers. The growth curves of F and F-aggregated centers are similar and may be divided into three stages. The photostimulated luminescence (PSL) decays by stimulation into the absorption bands of F centers and of F aggregates are different; the former decay logarithmically and the latter decay hyperbolically. Some non-radiative processes related to F aggregates, such as electron migration, occur accompanying the PSL process, which may reduce the PSL efficiency and sensitivity of the phosphors. (C) 1997 Published by Elsevier Science Ltd. All rights reserved.