982 resultados para lipopolysaccharide-induced fever
Resumo:
Poxviruses encode proteins that block the activity of cytokines. Here we show that the study of such virulence factors can contribute to our understanding of not only virus pathogenesis but also the physiological role of cytokines. Fever is a nonspecific response to infection that contributes to host defense. Several cytokines induce an elevation of body temperature when injected into animals, but in naturally occurring fever it has been difficult to show that any cytokine has a critical role. We describe the first example of the suppression of fever by a virus and the molecular mechanism leading to it. Several vaccinia virus strains including smallpox vaccines express soluble interleukin 1 (IL-1) receptors, which bind IL-1 beta but not IL-1 alpha. These viruses prevent the febrile response in infected mice, whereas strains that naturally or through genetic engineering lack the receptor induce fever. Repair of the defective IL-1 beta inhibitor in the smallpox vaccine Copenhagen, a more virulent virus than the widely used vaccine strains Wyeth and Lister, suppresses fever and attenuates the disease. The vaccinia-induced fever was inhibited with antibodies to IL-1 beta. These findings provide strong evidence that IL-1 beta, and not other cytokines, is the major endogenous pyrogen in a poxvirus infection.
Resumo:
Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.
Resumo:
LITAF (lipopolysaccharide-induced tumor necrosis factor-alpha factor), une protéine lysosomale, possède deux motifs PPXY capables d’interagir avec les domaines WW d’un sous-groupe spécifique de trois ligases de l’ubiquitine. Ces ligases sont impliquées dans l’ubiquitylation ainsi que la dégradation de diverses protéines cellulaires aux lysosomes et aux protéasomes. Les travaux menés dans le cadre de cette étude visaient à démontrer que LITAF active ces ligases et à déterminer les conséquences de cette activation sur les substrats de ces ligases. Pour y parvenir, des expériences d’ubiquitylation in vivo et in vitro ont été menées en présence de LITAF ainsi que des ligases et des substrats appropriés. L’activation des ligases a été mesurée par leur taux d’autoubiquitylation et celle de leurs substrats par leur taux d’ubiquitylation et de dégradation. Les résultats obtenus montrent que l’activité des ligases est augmentée en présence de LITAF et que l’ubiquitylation et la dégradation des substrats de ces ligases sont partiellement augmentées. LITAF semble donc jouer un rôle de régulateur des ligases de l’ubiquitine. L’importance de ces résultats réside dans le fait que l'expression et la localisation intracellulaire de LITAF sont affectées dans plusieurs pathologies. Nos résultats amènent un éclairage nouveau sur le rôle physiologique de cette protéine et pourraient expliquer en partie comment l'altération de l'expression de LITAF affecte l'équilibre cellulaire.
Resumo:
Background: The CXC chemokine receptor 4 (CXCR4) and its ligand, stromal cell-derived factor-1 (SDF-1 alpha or CXC chemokine ligand 12) are involved in the trafficking of leukocytes into and out of extravascular tissues. The purpose of this study was to determine whether SDF-1 alpha secreted by host cells plays a role in recruiting inflammatory cells into the periodontia during local inflammation. Methods: SDF-1 alpha levels were determined by enzyme-linked immunosorbent assay in gingival crevicular fluid (GCF) of 24 individuals with periodontitis versus healthy individuals in tissue biopsies and in a preclinical rat model of Porphyromonas gingivalis lipopolysaccharide-induced experimental bone loss. Neutrophil chemotaxis assays were also used to evaluate whether SDF-1 alpha plays a role in the recruitment of host cells at periodontal lesions. Results: Subjects with periodontal disease had higher levels of SDF-1 alpha in their GCF compared to healthy subjects. Subjects with periodontal disease who underwent mechanical therapy demonstrated decreased levels of SDF-1 alpha. Immunohistologic staining showed that SDF-1 alpha and CXCR4 levels were elevated in samples obtained from periodontally compromised individuals. Similar results were observed in the rodent model. Neutrophil migration was enhanced in the presence of SDF-1 alpha, mimicking immune cell migration in periodontal lesions. Conclusions: SDF-1 alpha may be involved in the immune defense pathway activated during periodontal disease. Upon the development of diseased tissues, SDF-1 alpha levels increase and may recruit host defensive cells into sites of inflammation. These studies suggest that SDF-1 alpha may be a useful biomarker for the identification of periodontal disease progression.
Resumo:
Matrix metal loprotease-13 (MMP-13) is induced by pro-inflammatory cytokines and increased expression is associated with a number of pathological conditions such as tumor metastasis, osteoarthritis, rheumatoid arthritis and periodontal diseases. MMP-13 gene regulation and the signal transduction pathways activated in response to bacterial LPS are largely unknown. In these studies, the role of the mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-13 induced by lipopolysaccharide was investigated. Lipopolysaccharide from Escherichia coli and Actinobacillus actinomycetemcomitans significantly (P < 0.05) increased MMP-13 steady-state mRNA (average of 27% and 46% increase, respectively) in murine periodontal ligament fibroblasts. MMP-13 mRNA induction was significantly reduced by inhibition of p38 MAP kinase. Immunoblot analysis indicated that p38 signaling was required for LPS-induced MMP-13 expression. Lipopolysaccharide induced proximal promoter reporter (-660/+32 mMMP-13) gene activity required p38 signaling. Collectively, these results indicate that lipopolysaccharide-induced murine MMP-13 is regulated by p38 signaling through a transcriptional mechanism.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Benzodiazepines are one of the most frequently prescribed drugs due to their anxiolytic properties. The aim of this study was to evaluate the effects of diazepam on lipopolysaccharide-induced peritoneal acute inflammatory responses. Swiss mice were treated with diazepam in a single dose of 1 or 10 mg/kg- subcutaneously 1 h before an intraperitoneal injection of lipopolysaccharide or sterile saline solution. The mice were killed 16 h after and the cells were washed from the peritoneal cavity to determine the total number of cells and the mononuclear and polimorfonuclear subpopulations, as well as the TNF-alpha activity and percentage of spread macrophages. Our results showed that the diazepam treatment (1 and 10 mg/kg) induced a significant reduction in the LPS-induced macrophage stimulation and TNF-α activity. Diazepam (10 mg/kg) also reduced the inflammatory cellular migration when compared to the control. It can be concluded that the diazepam treatment in a single dose is able to influence the inflammatory cellular influx, macrophage stimulation and TNF-α activity in the acute inflammatory response in mice, having possible implications on the anti-infectious response efficiency.
Resumo:
Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20 mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4 days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2[7-Amino-2-(2-furyl)[1,2,4] triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Alkylamides (alkamides) from Echinacea modulate tumor necrosis factor alpha mRNA expression in human monocytes/macrophages via the cannabinoid type 2 (CB2) receptor (Gertsch, J., Schoop, R., Kuenzle, U., and Suter, A. (2004) FEBS Lett. 577, 563-569). Here we show that the alkylamides dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (A1) and dodeca-2E,4E-dienoic acid isobutylamide (A2) bind to the CB2 receptor more strongly than the endogenous cannabinoids. The Ki values of A1 and A2 (CB2 approximately 60 nM; CB1 >1500 nM) were determined by displacement of the synthetic high affinity cannabinoid ligand [3H]CP-55,940. Molecular modeling suggests that alkylamides bind in the solvent-accessible cavity in CB2, directed by H-bonding and pi-pi interactions. In a screen with 49 other pharmacologically relevant receptors, it could be shown that A1 and A2 specifically bind to CB2 and CB1. A1 and A2 elevated total intracellular Ca2+ in CB2-positive but not in CB2-negative promyelocytic HL60 cells, an effect that was inhibited by the CB2 antagonist SR144528. At 50 nM, A1, A2, and the endogenous cannabinoid anandamide (CB2 Ki >200 nM) up-regulated constitutive interleukin (IL)-6 expression in human whole blood in a seemingly CB2-dependent manner. A1, A2, anandamide, the CB2 antagonist SR144528 (Ki <10 nM), and also the non-CB2-binding alkylamide undeca-2E-ene,8,10-diynoic acid isobutylamide all significantly inhibited lipopolysaccharide-induced tumor necrosis factor alpha, IL-1beta, and IL-12p70 expression (5-500 nM) in a CB2-independent manner. Alkylamides and anandamide also showed weak differential effects on anti-CD3-versus anti-CD28-stimulated cytokine expression in human whole blood. Overall, alkylamides, anandamide, and SR144528 potently inhibited lipopolysaccharide-induced inflammation in human whole blood and exerted modulatory effects on cytokine expression, but these effects are not exclusively related to CB2 binding.
Resumo:
Macrophages play a key role in both normal and pathological processes involving immune and inflammatory responses, to a large extent through their capacity to secrete a wide range of biologically active molecules. To identify some of these as yet not characterized molecules, we have used a subtraction cloning approach designed to identify genes expressed in association with macrophage activation. One of these genes, designated macrophage inhibitory cytokine 1 (MIC-1), encodes a protein that bears the structural characteristics of a transforming growth factor β (TGF-β) superfamily cytokine. Although it belongs to this superfamily, it has no strong homology to existing families, indicating that it is a divergent member that may represent the first of a new family within this grouping. Expression of MIC-1 mRNA in monocytoid cells is up-regulated by a variety of stimuli associated with activation, including interleukin 1β, tumor necrosis factor α (TNF-α), interleukin 2, and macrophage colony-stimulating factor but not interferon γ, or lipopolysaccharide (LPS). Its expression is also increased by TGF-β. Expression of MIC-1 in CHO cells results in the proteolytic cleavage of the propeptide and secretion of a cysteine-rich dimeric protein of Mr 25 kDa. Purified recombinant MIC-1 is able to inhibit lipopolysaccharide -induced macrophage TNF-α production, suggesting that MIC-1 acts in macrophages as an autocrine regulatory molecule. Its production in response to secreted proinflammatory cytokines and TGF-β may serve to limit the later phases of macrophage activation.
Resumo:
The enzymes cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin (PG) H2, the precursor of PGs and thromboxane. These lipid mediators play important roles in inflammation and pain and in normal physiological functions. While there are abundant data indicating that the inducible isoform, COX-2, is important in inflammation and pain, the constitutively expressed isoform, COX-1, has also been suggested to play a role in inflammatory processes. To address the latter question pharmacologically, we used a highly selective COX-1 inhibitor, SC-560 (COX-1 IC50 = 0.009 μM; COX-2 IC50 = 6.3 μM). SC-560 inhibited COX-1-derived platelet thromboxane B2, gastric PGE2, and dermal PGE2 production, indicating that it was orally active, but did not inhibit COX-2-derived PGs in the lipopolysaccharide-induced rat air pouch. Therapeutic or prophylactic administration of SC-560 in the rat carrageenan footpad model did not affect acute inflammation or hyperalgesia at doses that markedly inhibited in vivo COX-1 activity. By contrast, celecoxib, a selective COX-2 inhibitor, was anti-inflammatory and analgesic in this model. Paradoxically, both SC-560 and celecoxib reduced paw PGs to equivalent levels. Increased levels of PGs were found in the cerebrospinal fluid after carrageenan injection and were markedly reduced by celecoxib, but were not affected by SC-560. These results suggest that, in addition to the role of peripherally produced PGs, there is a critical, centrally mediated neurological component to inflammatory pain that is mediated at least in part by COX-2.
Resumo:
Nitric oxide produced in endothelial cells affects vascular tone. To investigate the role of endothelial nitric oxide synthase (eNOS) in blood pressure regulation, we have generated mice heterozygous (+/−) or homozygous (−/−) for disruption of the eNOS gene. Immunohistochemical staining with anti-eNOS antibodies showed reduced amounts of eNOS protein in +/− mice and absence of eNOS protein in −/− mutant mice. Male or female mice of all three eNOS genotypes were indistinguishable in general appearance and histology, except that −/− mice had lower body weights than +/+ or +/− mice. Blood pressures tended to be increased (by approximately 4 mmHg) in +/− mice compared with +/+, while −/− mice had a significant increase in pressure compared with +/+ mice (≈18 mmHg) or +/− mice (≈14 mmHg). Plasma renin concentration in the −/− mice was nearly twice that of +/+ mice, although kidney renin mRNA was modestly decreased in the −/− mice. Heart rates in the −/− mice were significantly lower than in +/− or +/+ mice. Appropriate genetic controls show that these phenotypes in F2 mice are due to the eNOS mutation and are not due to sequences that might differ between the two parental strains (129 and C57BL/6J) and are linked either to the eNOS locus or to an unlinked chromosomal region containing the renin locus. Thus eNOS is essential for maintenance of normal blood pressures and heart rates. Comparisons between the current eNOS mutant mice and previously generated inducible nitric oxide synthase mutants showed that homozygous mutants for the latter differ in having unaltered blood pressures and heart rates; both are susceptible to lipopolysaccharide-induced death.
Resumo:
The objective of this study was to elucidate the role of the proteasome pathway or multicatalytic proteinase complex in the induction of immunologic nitric oxide (NO) synthase (iNOS) in rat alveolar macrophages activated by lipopolysaccharide. Macrophages were incubated in the presence of lipopolysaccharide plus test agent for up to 24 hr. Culture media were analyzed for accumulation of stable oxidation products of NO (NO2- + N03-, designated as NOX-), cellular RNA was extracted for determination of iNOS mRNA levels by Northern blot analysis, and nuclear extracts were prepared for determination of NF-kappa B by electrophoretic mobility-shift assay. Inhibitors of calpain (alpha-N-acetyl-Leu-Leu-norleucinal; N-benzyloxycarbonyl-Leu-leucinal) and the proteasome (N-benzyloxycarbonyl-Ile-Glu-(O-t-Bu)-Ala-leucinal) markedly inhibited or abolished the induction of iNOS in macrophages. The proteinase inhibitors interfered with lipopolysaccharide-induced NOX- production by macrophages, and this effect was accompanied by comparable interference with the appearance of both iNOS mRNA and NF-kappa B. Calpain inhibitors elicited effects at concentrations of 1-100 microM, whereas the proteasome inhibitor was 1000-fold more potent, producing significant inhibitory effects at 1 nM. The present findings indicate that the proteasome pathway is essential for lipopolysaccharide-induced expression of the iNOS gene in rat alveolar macrophages. Furthermore, the data support the view that the proteasome pathway is directly involved in promoting the activation of NF-kappa B and that the induction of iNOS by lipopolysaccharide involves the transcriptional action of NF-kappaB.
Resumo:
The monoclonal nonspecific suppressor factor (MNSF) is a lymphokine product of a murine T-cell hybridoma that inhibits the generation of lipopolysaccharide-induced immunoglobulin-secreting cells in an antigen-nonspecific manner. A cDNA clone encoding MNSF beta (an isoform of MNSF) was isolated and expressed in bacteria. The sequence obtained is virtually identical to the Fau protein, a product of the ubiquitously expressed fau gene with unknown function. Northern blot analysis demonstrated a single, 0.6-kb transcript. Specific polyclonal antibodies against synthetic peptides corresponding to the deduced amino acid sequences were elicited in rabbits. Immunoprecipitation experiments with these antibodies showed that MNSF beta is released extracellularly in an aggregate form, albeit it lacks a signal peptide sequence. The anti-MNSF beta affinity eluate from the MNSF-producing murine hybridoma (E17) and concanavalin A-activated splenocyte culture supernatants inhibited the immunoglobulin production by lipopolysaccharide-activated splenocytes. Recombinant MNSF beta also showed a similar biologic activity. Thus, ubiquitin-like protein(s) may be involved in the regulation of the immune responses.
Resumo:
Concanavalin A, a T cell mitogen enhanced DNA synthesis in murine splenocytes. Amongst the early signals prior to this event was an increase in cytosolic calcium derived from both intra- and extracellular sources. The requirements for extracellular calcium persisted for four hours after the lectin administration which itself was needed for six hours. Putative calcium channel antagonists and calmodulin inhibitors blocked ihe increase in DNA synthesis. The calcium signal was mimicked by application of the ionophore, A23187, although no increase in DNA synthesis occurred. An activator of protein kinase C, 12-0- tetradecanoylphorbol 13-acetate, had little effect in isolation but the combined application of these two agents greatly enhanced DNA synthesis. The natural mediators of these events are presumed to be inositol trisphosphate and diacylglycerol derived from phosphatidylinositol bisphosphate hydrolysis. Lectin application and protein kinase C activation both increased intracellular pH possibly as a result of Na'l'/H"'' exchange since amiloride an inhibitor of this antiporter inhibited lectin induced DNA synthesis. The calcium and hydrogen ionic changes occur within minutes of lectin application; the protracted requirement for this mitogen suggests further signalling mechanisms occur to elicit maximum DNA synthesis in these cells. Gonadectomy caused an increase in thymic and splenic weight. Spleno-cytes derived from castrated mice showed no change in mitogen response whereas those from ovariectomised mice demonstrated a reduced lectin sensitivity. Testosterone, 5 a dihydrotestosterone, a and 0 oestradiol all inhibited lectin induced DNA synthesis but only at pharmacological concentrations. Testosterone glucuronide and cholesterol were without effect Studies with mouse serum fractions of differing steroidal status were unable to confirm the presence or absence of serum factors which might mediate the effects of steroid on lymphoid cells, all fractions tested inhibited lymphocyte transformation. Both interleukin-2 and lipopolysaccharide induced splenocyte mitogene-sis was also impaired by high steroid concentrations in vitro, suggesting that steroids mediate their effect by a non-specific, non-receptor-mediated event.