915 resultados para linear approximation method
Resumo:
In our earlier work [1], we employed MVDR (minimum variance distortionless response) based spectral estimation instead of modified-linear prediction method [2] in pitch modification. Here, we use the Bauer method of MVDR spectral factorization, leading to a causal inverse filter rather than a noncausal filter setup with MVDR spectral estimation [1]. Further, this is employed to obtain source (or residual) signal from pitch synchronous speech frames. The residual signal is resampled using DCT/IDCT depending on the target pitch scale factor. Finally, forward filters realized from the above factorization are used to get pitch modified speech. The modified speech is evaluated subjectively by 10 listeners and mean opinion scores (MOS) are tabulated. Further, modified bark spectral distortion measure is also computed for objective evaluation of performance. We find that the proposed algorithm performs better compared to time domain pitch synchronous overlap [3] and modified-LP method [2]. A good MOS score is achieved with the proposed algorithm compared to [1] with a causal inverse and forward filter setup.
Resumo:
A methodology is presented for the synthesis of analog circuits using piecewise linear (PWL) approximations. The function to be synthesized is divided into PWL segments such that each segment can be realized using elementary MOS current-mode programmable-gain circuits. A number of these elementary current-mode circuits when connected in parallel, it is possible to realize piecewise linear approximation of any arbitrary analog function with in the allowed approximation error bounds. Simulation results show a close agreement between the desired function and the synthesized output. The number of PWL segments used for approximation and hence the circuit area is determined by the required accuracy and the smoothness of the resulting function.
Resumo:
The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.
First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.
Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.
Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.
Resumo:
The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.
Resumo:
The exact calculation of mode quality factor Q is a key problem in the design of high-Q photonic crystal nanocavity. On the basis of further investigation on conventional Pade approximation, FDM and DFT, Pade approximation with Baker's algorithm is enhanced through introducing multiple frequency search and parabola interpolation. Though Pade approximation is a nonlinear signal processing method and only short time sequence is needed, we find the different length of sequence requirements for 2D and 3D FDTD, which is very important to obtain convergent and accurate results. By using the modified Pade approximation method and 3D FDTD, the 2D slab photonic crystal nanocavity is analyzed and high-Q multimode can be solved quickly instead of large range high-resolution scanning. Monitor position has also been investigated. These results are very helpful to the design of photonic crystal nanocavity devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
IEEE Computer Society
Resumo:
Internal and surface waves generated by the deformations of the solid bed in a two layer fluid system of infinite lateral extent and uniform depth are investigated. An integral solution is developed for an arbitrary bed displacement on the basis of a linear approximation of the complete description of wave motion using a transform method (Laplace in time and Fourier in space) analogous to that used to study the generation of tsunamis by many researchers. The theoretical solutions are presented for three interesting specific deformations of the seafloor; the spatial variation of each seafloor displacement consists of a block section of the seafloor moving vertically either up or down while the time-displacement history of the block section is varied. The generation process and the profiles of the internal and surface waves for the case of the exponential bed movement are numerically illustrated, and the effects of the deformation parameters, densities and depths of the two layers on the solutions are discussed. As expected, the solutions derived from the present work include as special cases that obtained by Kervella et al. [Theor Comput Fluid Dyn 21:245-269, 2007] for tsunamis cased by an instantaneous seabed deformation and those presented by Hammack [J Fluid Mech 60:769-799, 1973] for the exponential and the half-sine bed displacements when the density of the upper fluid is taken as zero.
Resumo:
Ray tracing is a rapid and effective method for wave field calculation. Not only in the field of seismic-wave theory, but also in the field of seismic inversion and migration imaging,the seismic ray tracing method has become one of the most important methods. In anisotropic media, group velocity and phase velocity have different propagation directions. The seismic wave propagates along the direction of group velocity , it does not depend on the direction of phase velocity. Ray angle is a complex function with respect to phase angle, it is difficult to measure and calculate. But most rocks are weak anisotropic, so the expression of phase velocity can be simplified greatly. Based on the approximate expression of phase velocity this thesis for rotating axisymmetric weak anisotropic media deduces an expression of the partial derivative of phase velocity and an expression of group velocity with the method of linear approximation. This paper uses the fourth order Runge-Kutta method together with the two-dimensional interpolation and linear interpolation to obtain the parameters of the physical locations. At last the paths of seismic wave in rotating axisymmetric weak anisotropic media are computed. According to the analysis of the computational results, it indicates that the method developed in this paper has strong adaptability, high computational efficiency and high accuracy for rotating axisymmetric weak anisotropic media.
Resumo:
This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.
Resumo:
The linear and nonlinear properties of ion acoustic excitations propagating in warm dense electron-positron-ion plasma are investigated. Electrons and positrons are assumed relativistic and degenerate, following the Fermi-Dirac statistics, whereas the warm ions are described by a set of classical fluid equations. A linear dispersion relation is derived in the linear approximation. Adopting a reductive perturbation method, the Korteweg-de Vries equation is derived, which admits a localized wave solution in the form of a small-amplitude weakly super-acoustic pulse-shaped soliton. The analysis is extended to account for arbitrary amplitude solitary waves, by deriving a pseudoenergy-balance like equation, involving a Sagdeev-type pseudopotential. It is shown that the two approaches agree exactly in the small-amplitude weakly super-acoustic limit. The range of allowed values of the pulse soliton speed (Mach number), wherein solitary waves may exist, is determined. The effects of the key plasma configuration parameters, namely, the electron relativistic degeneracy parameter, the ion (thermal)-to-the electron (Fermi) temperature ratio, and the positron-to-electron density ratio, on the soliton characteristics and existence domain, are studied in detail. Our results aim at elucidating the characteristics of ion acoustic excitations in relativistic degenerate plasmas, e.g., in dense astrophysical objects, where degenerate electrons and positrons may occur.
Resumo:
Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free
Resumo:
Affiliation: Institut de recherche en immunologie et en cancérologie, Université de Montréal
Resumo:
Étant donnée une fonction bornée (supérieurement ou inférieurement) $f:\mathbb{N}^k \To \Real$ par une expression mathématique, le problème de trouver les points extrémaux de $f$ sur chaque ensemble fini $S \subset \mathbb{N}^k$ est bien défini du point de vu classique. Du point de vue de la théorie de la calculabilité néanmoins il faut éviter les cas pathologiques où ce problème a une complexité de Kolmogorov infinie. La principale restriction consiste à définir l'ordre, parce que la comparaison entre les nombres réels n'est pas décidable. On résout ce problème grâce à une structure qui contient deux algorithmes, un algorithme d'analyse réelle récursive pour évaluer la fonction-coût en arithmétique à précision infinie et un autre algorithme qui transforme chaque valeur de cette fonction en un vecteur d'un espace, qui en général est de dimension infinie. On développe trois cas particuliers de cette structure, un de eux correspondant à la méthode d'approximation de Rauzy. Finalement, on établit une comparaison entre les meilleures approximations diophantiennes simultanées obtenues par la méthode de Rauzy (selon l'interprétation donnée ici) et une autre méthode, appelée tétraédrique, que l'on introduit à partir de l'espace vectoriel engendré par les logarithmes de nombres premiers.
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
The method of Least Squares is due to Carl Friedrich Gauss. The Gram-Schmidt orthogonalization method is of much younger date. A method for solving Least Squares Problems is developed which automatically results in the appearance of the Gram-Schmidt orthogonalizers. Given these orthogonalizers an induction-proof is available for solving Least Squares Problems.