996 resultados para kuttand irrigation project
Resumo:
The economic analysis is based on the A, B, C and D management practice framework for water quality improvement developed in 2007/2008 by the respective natural resource management region. This document focuses on the economic implications of these management practices in the Burdekin River Irrigation Area (BRIA). A review of the management practices is currently being undertaken to clarify some issues and incorporate new knowledge since the earlier version of the framework. However, this updated version is not yet complete and so the Paddock to Reef project has used the most current available version of the framework for the modelling and economics.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.
Resumo:
The aquatic ecosystem of the Upper Victoria Nile is part of a wider complex of water bodies (lakes and rivers) in Uganda that is of immense socioeconomic importance, especially the fisheries. A source of food, income, energy, irrigation and drinking water, the protection, sustainable use and management of the Upper Victoria Nile water resources are vital to Uganda's economy. The Upper Victoria Nile,due to its abundance of socio-economic benefits,provides a significant contribution to Uganda's economy. The fisheries contribute to the sector as a major source of the export earnings, second to coffee (NEMA,1996), sustain small fishing villages,provide income and generally improve nutrition. Apart from the socio-economic significance of the fisheries,the riverine features of the Upper Victoria Nile, especially its hydropower potential,distinguish this river from the rest of the aquatic ecosystems in the country.
Resumo:
The crop management practice of alternate wetting and drying (AWD) is being promoted by IRRI and the national research and extension program in Bangladesh and other parts of the world as a water-saving irrigation practice that reduces the environmental impact of dry season rice production through decreased water usage, and potentially increases yield. Evidence is growing that AWD will dramatically reduce the concentration of arsenic in harvested rice grains conferring a third major advantage over permanently flooded dry season rice production. AWD may also increase the concentration of essential dietary micronutrients in the grain. However, three crucial aspects of AWD irrigation require further investigation. First, why is yield generally altered in AWD? Second, is AWD sustainable economically (viability of farmers' livelihoods) and environmentally (aquifer water table heights) over long-term use? Third, are current cultivars optimized for this irrigation system? This paper describes a multidisciplinary research project that could be conceived which would answer these questions by combining advanced soil biogeochemistry with crop physiology, genomics, and systems biology. The description attempts to show how the breakthroughs in next generation sequencing could be exploited to better utilize local collections of germplasm and identify the molecular mechanisms underlying biological adaptation to the environment within the context of soil chemistry and plant physiology.
Resumo:
The market for table grapes is moving into mass production of specialty seed-less grapes in covered areas, aiming at obtaining premium prices with early or late production of high quality products. Production of quality seedless grapes is not straightforward since it is requires the correct combination of various independent characteristics, such as color, sugars, size and quantity at the right moment for successful harvesting and marketing. The present study was carried out at the two largest Portuguese producers located in Alentejo, and has the objective of studying the effect of irrigation management strategies and two different soils on the various relevant parameters for successful production and marketing. The management strategies were the application of ten day stress at the end of the cycle, in order to promote early maturing of the grapes. Three different timings of the stress were applied. Soil moisture, sap flow, bark thickness, as well as leaf water potential, stomatal conductance and chlorophyll content were measured regularly during the production season. The results indicate that the roots explore a rather large soil volume and the plants can successfully withstand reasonable periods of drought without significant changes to the plant physiology. Additionally late rains can mask the effect of any farmer applied drought and invalidate any farmer induced stress to the plants. Water-logged soils tend to cause early onset of maturity, but cause the ripening stage to extend over a longer period of time, and thus, in effect result in a delay in the harvest date. Topography also has some effect on the ripening, since hot air tends to accumulate under the plastic at the higher areas of the field. This work is funded by PRODER, 4.1, within the scope of project MORECRIMSON
Resumo:
This study deals with investigating the groundwater quality for irrigation purpose, the vulnerability of the aquifer system to pollution and also the aquifer potential for sustainable water resources development in Kobo Valley development project. The groundwater quality is evaluated up on predicting the best possible distribution of hydrogeochemicals using geostatistical method and comparing them with the water quality guidelines given for the purpose of irrigation. The hydro geochemical parameters considered are SAR, EC, TDS, Cl-, Na+, Ca++, SO4 2- and HCO3 -. The spatial variability map reveals that these parameters falls under safe, moderate and severe or increasing problems. In order to present it clearly, the aggregated Water Quality Index (WQI) map is constructed using Weighted Arithmetic Mean method. It is found that Kobo-Gerbi sub basin is suffered from bad water quality for the irrigation purpose. Waja Golesha sub-basin has moderate and Hormat Golena is the better sub basin in terms of water quality. The groundwater vulnerability assessment of the study area is made using the GOD rating system. It is found that the whole area is experiencing moderate to high risk of vulnerability and it is a good warning for proper management of the resource. The high risks of vulnerability are noticed in Hormat Golena and Waja Golesha sub basins. The aquifer potential of the study area is obtained using weighted overlay analysis and 73.3% of the total area is a good site for future water well development. The rest 26.7% of the area is not considered as a good site for spotting groundwater wells. Most of this area fall under Kobo-Gerbi sub basin.
Resumo:
Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.
Resumo:
In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the its design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient (VC) is not equal to production variation coefficient in the operational unit; d) the difference between the discharge variation coefficient and the productivity variation coefficient depends on the water depth applied. This study aimed to evaluate the relationship between EU used in the irrigation system design and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index proposed by Barragan. The emitter variation coefficient was always lower than the productivity variation coefficient. To obtain uniformity of production, it is necessary to consider the irrigation system uniformity and mainly the water depth to be applied.
Resumo:
Eucalyptus plantations occupy almost 20 million ha worldwide and exceed 3.7 million ha in Brazil alone. Improved genetics and silviculture have led to as much as a three-fold increase in productivity in Eucalyptus plantations in Brazil and the large land area occupied by these highly productive ecosystems raises concern over their effect on local water supplies. As part of the Brazil Potential Productivity Project, we measured water use of Eucalyptus grandis x urophylla clones in rainfed and irrigated stands in two plantations differing in productivity. The Aracruz (lower productivity) site is located in the state of Espirito Santo and the Veracel (higher productivity) site in Bahia state. At each plantation, we measured stand water use using homemade sap flow sensors and a calibration curve using the clones and probes we utilized in the study. We also quantified changes in growth, leaf area and water use efficiency (the amount of wood produced per unit of water transpired). Measurements were conducted for 1 year during 2005 at Aracruz and from August through December 2005 at Veracel. Transpiration at both sites was high compared to other studies but annual estimates at Aracruz for the rainfed treatment compared well with a process model calibrated for the Aracruz site (within 10%). Annual water use at Aracruz was 1394 mm in rainfed treatments versus 1779 mm in irrigated treatments and accounted for approximately 67% and 58% of annual precipitation and irrigation inputs respectively. Increased water use in the irrigated stands at Aracruz was associated with higher sapwood area, leaf area index and transpiration per unit leaf area but there was no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency at the Aracruz site was also not influenced by irrigation and was similar to the rainfed treatment. During the period of overlapping measurements, the response to irrigation treatments at the more productive Veracel site was similar to Aracruz. Stand water use at the Veracel site totaled 975 mm and 1102 mm in rainfed and irrigated treatments during the 5-month measurement period respectively. Irrigated stands at Veracel also had higher leaf area with no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency was also unaffected by irrigation at Veracel. Results from this and other studies suggest that improved resource availability does not negatively impact water use efficiency but increased productivity of these plantations is associated with higher water use and should be given consideration during plantation management decision making processes aimed at increasing productivity. Published by Elsevier B.V.
Resumo:
Variable rate sprinklers (VRS) have been developed to promote localized water application of irrigated areas. In Precision Irrigation, VRS permits better control of flow adjustment and, at the same time, provides satisfactory radial distribution profiles for various pressures and flow rates are really necessary. The objective of this work was to evaluate the performance and radial distribution profiles of a developed VRS which varies the nozzle cross sectional area by moving a pin in or out using a stepper motor. Field tests were performed under different conditions of service pressure, rotation angles imposed on the pin and flow rate which resulted in maximal water throw radiuses ranging from 7.30 to 10.38 m. In the experiments in which the service pressure remained constant, the maximal throw radius varied from 7.96 to 8.91 m. Averages were used of repetitions performed under conditions without wind or with winds less than 1.3 m s-1. The VRS with the four stream deflector resulted in greater water application throw radius compared to the six stream deflector. However, the six stream deflector had greater precipitation intensities, as well as better distribution. Thus, selection of the deflector to be utilized should be based on project requirements, respecting the difference in the obtained results. With a small opening of the nozzle, the VRS produced small water droplets that visually presented applicability for foliar chemigation. Regarding the comparison between the estimated and observed flow rates, the stepper motor produced excellent results.
Resumo:
The irrigation scheme Eduardo Mondlane, situated in Chókwè District - in the Southern part of the Gaza province and within the Limpopo River Basin - is the largest in the country, covering approximately 30,000 hectares of land. Built by the Portuguese colonial administration in the 1950s to exploit the agricultural potential of the area through cash-cropping, after Independence it became one of Frelimo’s flagship projects aiming at the “socialization of the countryside” and at agricultural economic development through the creation of a state farm and of several cooperatives. The failure of Frelimo’s economic reforms, several infrastructural constraints and local farmers resistance to collective forms of production led to scheme to a state of severe degradation aggravated by the floods of the year 2000. A project of technical rehabilitation initiated after the floods is currently accompanied by a strong “efficiency” discourse from the managing institution that strongly opposes the use of irrigated land for subsistence agriculture, historically a major livelihood strategy for smallfarmers, particularly for women. In fact, the area has been characterized, since the end of the XIX century, by a stable pattern of male migration towards South African mines, that has resulted in an a steady increase of women-headed households (both de jure and de facto). The relationship between land reform, agricultural development, poverty alleviation and gender equality in Southern Africa is long debated in academic literature. Within this debate, the role of agricultural activities in irrigation schemes is particularly interesting considering that, in a drought-prone area, having access to water for irrigation means increased possibilities of improving food and livelihood security, and income levels. In the case of Chókwè, local governments institutions are endorsing the development of commercial agriculture through initiatives such as partnerships with international cooperation agencies or joint-ventures with private investors. While these business models can sometimes lead to positive outcomes in terms of poverty alleviation, it is important to recognize that decentralization and neoliberal reforms occur in the context of financial and political crisis of the State that lacks the resources to efficiently manage infrastructures such as irrigation systems. This kind of institutional and economic reforms risk accelerating processes of social and economic marginalisation, including landlessness, in particular for poor rural women that mainly use irrigated land for subsistence production. The study combines an analysis of the historical and geographical context with the study of relevant literature and original fieldwork. Fieldwork was conducted between February and June 2007 (where I mainly collected secondary data, maps and statistics and conducted preliminary visit to Chókwè) and from October 2007 to March 2008. Fieldwork methodology was qualitative and used semi-structured interviews with central and local Government officials, technical experts of the irrigation scheme, civil society organisations, international NGOs, rural extensionists, and water users from the irrigation scheme, in particular those women smallfarmers members of local farmers’ associations. Thanks to the collaboration with the Union of Farmers’ Associations of Chókwè, she has been able to participate to members’ meeting, to education and training activities addressed to women farmers members of the Union and to organize a group discussion. In Chókwè irrigation scheme, women account for the 32% of water users of the familiar sector (comprising plot-holders with less than 5 hectares of land) and for just 5% of the private sector. If one considers farmers’ associations of the familiar sector (a legacy of Frelimo’s cooperatives), women are 84% of total members. However, the security given to them by the land title that they have acquired through occupation is severely endangered by the use that they make of land, that is considered as “non efficient” by the irrigation scheme authority. Due to a reduced access to marketing possibilities and to inputs, training, information and credit women, in actual fact, risk to see their right to access land and water revoked because they are not able to sustain the increasing cost of the water fee. The myth of the “efficient producer” does not take into consideration the characteristics of inequality and gender discrimination of the neo-liberal market. Expecting small-farmers, and in particular women, to be able to compete in the globalized agricultural market seems unrealistic, and can perpetuate unequal gendered access to resources such as land and water.
Resumo:
High tunnels are simple, plastic-covered, passive solar-heated structures in which crops are grown in the ground. They are used by fruit and vegetable growers to extend the growing season and intensify production in cold climates. The covered growing area creates a desert-like environment requiring carefully monitored irrigation practices. In contrast, the exterior expanse of a high tunnel generates a large volume of water with every measurable rainfall. Each 1,000 ft of high tunnel roof will generate approximately 300 gallons from a half inch of rain. Unless the high tunnel site is elevated from the surrounding area or drainage tiles installed, or other drainage accommodations are made around the perimeter, the soil along the inside edge of the high tunnel is nearly continuously saturated. High volumes of water can also create an erosion problem. The objective of this project was to design and construct a system that enables growers using high tunnels in their production operation to reduce drainage problems, erosion, and crop loss due to excess moisture in and around their high tunnel(s) without permanent environmental and soil mediations.
Resumo:
Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure –sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.