962 resultados para isoenzyme polymorphism
Resumo:
Negrão M.V, Alves CR, Alves G.B, Pereira A.C, Dias R.G, Laterza M.C, Mota G.F, Oliveira E.M, Bassaneze V, Krieger J.E, Negrão C.E, Rondon M.U.P. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiol Genomics 42A: 71-77, 2010. First published July 6, 2010; doi:10.1152/physiolgenomics.00145.2009.-Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 +/- 1 yr) and CT + CC (n = 35; age 26 +/- 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT + CC individuals (0.39 +/- 0.12 vs. 1.08 +/- 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT + CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT + CC individuals (1.05 +/- 0.18 vs. 1.59 +/- 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
Resumo:
Functional wing polymorphism is commonly observed it) insects, and it may confer an important adaptive value to populations that bear this trait, because it allows dispersal and the location to more favorable habitats for their survival and reproduction. According to the oogenesis-flight syndrome theory, such wing polymorphism may imply differences in the locomotion Capacity of individuals, which is a factor induced by adverse environmental conditions during muscle development in immatures. Scaptocoris carvalhoi Becker (Hemiptera: Cydnidae) is an important agriculture pest in Brazil, and it has burrowing habits. The adults swarm in the beginning of the rainy season after a prolonged drought period in the Brazilian cerrado region. In these swarms, part of the population leaves the soil, performing long flights until locations with more abundant vegetation. In this study, we characterized wing polymorphism in S. carvalhoi, this being the first description in a species of Cydnidae. Brachypterous and macropterous males and females were observed, which showed positive and significant correlations between body length and hindwing length. Macropterous individuals demonstrated greater locomotion capacity than brachypterous individuals. In addition, only long-winged adults could fly, showing wing mobility and flight reaction. The increased number of macropterous individuals inside the soil during the swarming season and in the beginning of the rainy period suggests that wing polymorphism in this population occurs in seasonal cycles and that factors related to the scarcity of rains influence the development of immatures and the formation of polymorphic adults.
Resumo:
P>Brazilian Santa Ines (SI) sheep are very well-adapted to the tropical conditions of Brazil and are an important source of animal protein. A high rate of twin births was reported in some SI flocks. Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15) are the first two genes expressed by the oocyte to be associated with an increased ovulation rate in sheep. All GDF9 and BMP15 variants characterized, until now, present the same phenotype: the heterozygote ewes have an increased ovulation rate and the mutated homozygotes are sterile. In this study, we have found a new allele of GDF9, named FecGE (Embrapa), which leads to a substitution of a phenylalanine with a cysteine in a conservative position of the mature peptide. Homozygote ewes presenting the FecGE allele have shown an increase in their ovulation rate (82%) and prolificacy (58%). This new phenotype can be very useful in better understanding the genetic control of follicular development; the mechanisms involved in the control of ovulation rate in mammals; and for the improvement of sheep production.
Resumo:
The variability of a fragment of the nucleocapsid gene of orchid fleck virus (OFV) was investigated by single-strand conformational polymorphism (SSCP) analysis and nucleotide sequencing. Forty-eight samples of 18 genera of orchids were collected from Brazil, Costa Rica and Australia. The SSCP analysis yielded six different band patterns, and phylogenetic analysis based on the nucleotide fragment sequence obtained in this work and six available in GenBank showed two different groups, one with isolates 023Germany and So-Japan, and other with the rest of the isolates. None of the analyses showed geographic correlation among the Brazilian strains. The data obtained in this study showed a low genetic variation in this region of the genome; the d(N)/d(S) ratio of 0.251-0.405 demonstrated a negative selective pressure that maintains the stability of the analyzed fragments.
Resumo:
Objective: Alterations in selenium (Se) status may result in suboptimal amounts of selenoproteins, which have been associated with increased oxidative stress levels. The Pro198Leu polymorphism at the glutathione peroxidase-1 (GPx1) gene is supposed to be functional. The response of Se status, GPx activity, and levels of DNA damage to a Se supplementation trial between the genotypes related to that polymorphism was investigated. Methods: A randomized trial was conducted with 37 morbidly obese women. Participants consumed one Brazil nut, which provided approximately 290 mu g of Se a day, for 8 wk. Blood Se concentrations, erythrocyte GPx activity, and DNA damage levels were measured at baseline and at 8 wk. The results were compared by genotypes. Results: The genotype frequencies were 0.487, 0.378, and 0.135 for Pro/Pro (the wild-type genotype), Pro/Leu, and Leu/Leu, respectively. At baseline, 100% of the subjects were Se deficient, and after the supplementation, there was an improvement in plasma Se (P < 0.001 for Pro/Pro and Pro/Leu, P < 0.05 for Leu/Leu), erythrocyte Se (P = 0.00 for Pro/Pro and Pro/Leu, P < 0.05 for Leu/Leu), and GPx activity (P = 0.00 for Pro/Pro, P < 0.00001 for Pro/Leu, P < 0.001 for Leu/Leu). In addition, the Pro/Pro group showed a decrease in DNA damage after Brazil nut consumption compared with baseline (P < 0.005), and those levels were higher in Leu/Leu subjects compared with those with the wild-type genotype (P < 0.05). Conclusion: Consumption of one unit of Brazil nuts daily effectively increases Se status and increases GPx activity in obese women, regardless of GPx1 Pro198Leu polymorphism. However, the evaluated biomarkers showed distinct results in response to the supplementation when the polymorphism was considered. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: Restriction fragment length polymorphism (RFLP) is a common molecular assay used for genotyping, and it requires validated quality control procedures to prevent mistyping caused by impaired endonuclease activity. We have evaluated the usefulness of a plasmid-based internal control in RFLP assays. Results: Blood samples were collected from 102 individuals with acute myocardial infarction (AMI) and 108 non-AMI individuals (controls) for DNA extraction and laboratory analyses. The 1196C> T polymorphism in the toll-like receptor 4 (TLR4) gene was amplified by mismatched-polymerase chain reaction (PCR). Amplicons and pBluescript II SK-plasmid were simultaneously digested with endonuclease HincII. Fragments were separated on 2% agarose gels. Plasmid was completely digested using up to 55.2 nmL/L DNA solutions and 1 mu L PCR product. Nevertheless, plasmid DNA with 41.4 nM or higher concentrations was incompletely digested in the presence of 7 mL PCR product. In standardized conditions, TLR4 1196C> T variant was accurately genotyped. TLR4 1196T allele frequency was similar between AMI (3.1%) and controls (2.0%, p = 0.948). TLR4 SNP was not associated with AMI in this sample population. In conclusion, the plasmid-based control is a useful approach to prevent mistyping in RFLP assays, and it is validate for genetic association studies such as TLR4 1196C> T.
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.
Resumo:
Mercury (Hg) exposure is associated with disease conditions, including cardiovascular problems. Although the mechanisms implicated in these complications have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-2 presents genetic polymorphisms which affect the expression and activity level of this enzyme. A common polymorphism of MMP-2 gene is the C(-1306)T (rs 243865), which is known to disrupt a Sp1-type promoter site (CCACC box), thus leading to lower promoter activity associated with the T allele. This study aimed at examining how this polymorphism affects the circulating MMP-2 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-2 (TIMP-2) in 210 subjects environmentally exposed to Hg. Total blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-2 and TIMP-2 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1306)T polymorphism were determined by Taqman (R) Allele Discrimination assay. We found a positive association (p = 0.0057) between plasma Hg concentrations and MMP-2/TIMP-2 (an index of net MMP-2 activity). The C(-1306)T polymorphism modified MMP-2 concentrations (p = 0.0465) and MMP-2/TIMP-2 ratio (p = 0.0060) in subjects exposed to Hg, with higher MMP-2 levels been found in subjects carrying the C allele. These findings suggest a significant interaction between the C(-1306)T polymorphism and Hg exposure, possibly increasing the risk of developing diseases in subjects with the C allele. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mercury (Hg) exposure causes health problems including cardiovascular diseases. Although precise mechanisms have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-9 presents genetic polymorphisms which affect the expression and activity level of this enzyme. Two polymorphisms in the promoter region [C(-1562)T and (CA)(n)] are functionally relevant, and are implicated in several diseases. This study aimed at examining how these polymorphisms affect the circulating MMP-9 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-1 (TIMP-1) in 266 subjects environmentally exposed to Hg. Blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-9 and TIMP-1 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. We found a positive association (P<0.05) between plasma Hg concentrations and MMP-9/TIMP-1 ratio (an index of net MMP-9 activity). When the subjects were divided into tertiles with basis on their plasma Hg concentrations, we found that the (CA)(n) polymorphism modified MMP-9 concentrations and MMP-9/TIMP-1 ratio in subjects with the lowest Hg concentrations (first tertile), with the highest MMP-9 levels being found in subjects with genotypes including alleles with 21 or more CA repeats (H alleles) (P<0.05). Conversely, this polymorphism had no effects on subjects with intermediate or high plasma Hg levels (second and third tertiles, respectively). The C(-1562)T polymorphism had no effects on MMP-9 levels. These findings suggest a significant interaction between the (CA)(n) polymorphism and low levels of Hg exposure, possibly increasing the risk of developing diseases in subjects with H alleles. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
Plant cyanogenesis, the release of cyanide from endogenous cyanide-containing compounds, is an effective herbivore deterrent. This paper characterises cyanogenesis in the Australian tree Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill for the first time. The cyanogenic glucoside prunasin ((R)-mandelonitrile beta-D-glucoside) was determined to be the only cyanogenic compound in E. polyanthemos foliage. Two natural populations of E. polyanthernos showed quantitative variation in foliar prumasin concentration, varying from zero (i.e. acyanogenic) to 2.07 mg CN g(-1) dry weight in one population and from 0.17 to 1.98 mg CN g(-1) dry weight in the other. No significant difference was detected between the populations with respect to the mean prunasin concentration or the degree of variation in foliar prunasin, despite significant differences in foliar nitrogen. Variation between individuals was also observed with respect to the capacity of foliage to catabolise prunasin to form cyanide. Moreover, variation in this capacity generally correlated with the amount of prunasin in the tissue, suggesting genetic linkage between prunasin and beta-glucosidase. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The inflammasome is an inducible cytoplasmic structure that is responsible for production and release of biologically active interleukin-1 (IL-1). A polymorphism in the inflammasome component NALP3 has been associated with decreased IL-1 levels and increased occurrence of vaginal Candida infection. We hypothesized that this polymorphism-induced variation would influence susceptibility to infertility. DNA was obtained from 243 women who were undergoing in vitro fertilization (IVF) and tested for a length polymorphism in intron 2 of the gene coding for NALP3 (gene symbol CIAS1). At the conclusion of testing the findings were analyzed in relation to clinical parameters and IVF outcome. The frequency of the 12 unit repeat allele, associated with maximal inflammasome activity, was 62.3% in cases of female infertility vs. 75.6% in cases where only the male partner had a detectable fertility problem (p = 0.0095). Conversely, the frequency of the 7 unit repeat allele was 28.9% in those with a female fertility problem, 17.0% in women with infertile males and 18.4% in idiopathic infertility (p = 0.0124). Among the women who were cervical culture-positive for mycoplasma the frequency of the 7 unit repeat was 53.7% as opposed to 19.5% in those negative for this infection (p < 0.0001). We conclude that the CIAS1 7 unit repeat polymorphism increases the likelihood of mycoplasma infection-associated female infertility. (C) 2009 Elsevier Ireland Ltd. All rights reserved.