992 resultados para ionization-energy
Resumo:
CO oxidation on PtO2(110) has been studied using density functional theory calculations. Four possible reaction mechanisms were investigated and the most feasible one is the following: (i) the O at the bridge site of PtO2(110) reacts with CO on the coordinatively unsaturated site (CUS) with a negligible barrier; (ii) O-2 adsorbs on the bridge site and then interacts with CO on the CUS to form an OO-CO complex; (iii) the bond of O-OCO breaks to produce CO2 with a small barrier (0.01 eV). The CO oxidation mechanisms on metals and metal oxides are rationalized by a simple model: The O-surface bonding determines the reactivity on surfaces; it also determines whether the atomic or molecular mechanism is preferred. The reactivity on metal oxides is further found to be related to the 3rd ionization energy of the metal atom.
Resumo:
Many-body theory is developed to calculate the γ spectra for positron annihilation in noble-gas atoms. Inclusion of electron-positron correlation effects and core annihilation gives spectra in excellent agreement with experiment [K. Iwata et al., Phys. Rev. Lett. 79, 39 (1997)]. The calculated correlation enhancement factors γnl for individual electron orbitals nl are found to scale with the ionization energy Inl (in eV), as γnl=1+ √A/Inl+(B/Inl)β, where A≈40 eV, B≈24 eV, and β≈2.3.
Resumo:
Element 115 is expected to be in group V-a of the periodic table and have most stable oxidation states of I and III. The oxidation state of I, which plays a minor role in bismuth chemistry, should be a major factor in 115 chemistry. This change will arise because of the large relativistic splitting of the spherically symmetric 7p_l/2 shell from the 7P_3/2 shell. Element 115 will therefore have a single 7p_3/2 electron outside a 7p^2_1/2 closed shell. The magnitude of the first ionization energy and ionic radius suggest a chemistry similar to Tl^+. Similar considerations suggest that 115^3+ will have a chemistry similar to Bi^3+. Hydrolysis will therefore be easy and relatively strongly complexing anions of strong acids will be needed in general to effect studies of complexation chemistry. Some other properties of 115 predicted are as follows: ionization potentials I 5.2 eV, II 18.1 eV, III 27.4 eV, IV 48.5 eV, 0 \rightarrow 5^+ 159 eV; heat of sublimation, 34 kcal (g-atom)^-1; atomic radius, 2.0 A; ionic radius, 115^+ 1.5 A, 115^3+ 1.0 A; entropy, 16 cal deg^-1 (g-atom)^-l (25°); standard electrode potential 115^+ |115, -1.5 V; melting and boiling points are similar to element 113.
Resumo:
Multiconfigurational second-order perturbation theory (CASSCF//CASPT2) and quadruple-zeta ANO-RCC basis sets were employed to investigate the ground and low-lying electronic states of MoB and MoB(+). Spectroscopic constants, potential energy curves, wavefunctions, Mulliken population analyses, and ionization energies are given. The ground state of MoB is of X(6)Pi symmetry (R(e) = 1.968 angstrom, omega(e) = 664 cm(-1), and mu = 2.7 D), giving rise to a Omega = 7/2 ground state after including spin-orbit coupling. For MoB(+), the ground state is computed to be of X(7)Sigma(+) symmetry (R(e) = 2.224 angstrom, omega(e) = 141 cm(-1), and mu = 1.2 D), with an adiabatic ionization energy of 7.19 eV and a vertical one of 7.53 eV. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3362-3370, 2011
Resumo:
In this dissertation, the theoretical principles governing the molecular modeling were applied for electronic characterization of oligopeptide α3 and its variants (5Q, 7Q)-α3, as well as in the quantum description of the interaction of the aminoglycoside hygromycin B and the 30S subunit of bacterial ribosome. In the first study, the linear and neutral dipeptides which make up the mentioned oligopeptides were modeled and then optimized for a structure of lower potential energy and appropriate dihedral angles. In this case, three subsequent geometric optimization processes, based on classical Newtonian theory, the semi-empirical and density functional theory (DFT), explore the energy landscape of each dipeptide during the search of ideal minimum energy structures. Finally, great conformers were described about its electrostatic potential, ionization energy (amino acids), and frontier molecular orbitals and hopping term. From the hopping terms described in this study, it was possible in subsequent studies to characterize the charge transport propertie of these peptides models. It envisioned a new biosensor technology capable of diagnosing amyloid diseases, related to an accumulation of misshapen proteins, based on the conductivity displayed by proteins of the patient. In a second step of this dissertation, a study carried out by quantum molecular modeling of the interaction energy of an antibiotic ribosomal aminoglicosídico on your receiver. It is known that the hygromycin B (hygB) is an aminoglycoside antibiotic that affects ribosomal translocation by direct interaction with the small subunit of the bacterial ribosome (30S), specifically with nucleotides in helix 44 of the 16S ribosomal RNA (16S rRNA). Due to strong electrostatic character of this connection, it was proposed an energetic investigation of the binding mechanism of this complex using different values of dielectric constants (ε = 0, 4, 10, 20 and 40), which have been widely used to study the electrostatic properties of biomolecules. For this, increasing radii centered on the hygB centroid were measured from the 30S-hygB crystal structure (1HNZ.pdb), and only the individual interaction energy of each enclosed nucleotide was determined for quantum calculations using molecular fractionation with conjugate caps (MFCC) strategy. It was noticed that the dielectric constants underestimated the energies of individual interactions, allowing the convergence state is achieved quickly. But only for ε = 40, the total binding energy of drug-receptor interaction is stabilized at r = 18A, which provided an appropriate binding pocket because it encompassed the main residues that interact more strongly with the hygB - C1403, C1404, G1405, A1493, G1494, U1495, U1498 and C1496. Thus, the dielectric constant ≈ 40 is ideal for the treatment of systems with many electrical charges. By comparing the individual binding energies of 16S rRNA nucleotides with the experimental tests that determine the minimum inhibitory concentration (MIC) of hygB, it is believed that those residues with high binding values generated bacterial resistance to the drug when mutated. With the same reasoning, since those with low interaction energy do not influence effectively the affinity of the hygB in its binding site, there is no loss of effectiveness if they were replaced.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The first LHC pp collisions at centre-of-mass energies of 0.9 and 2.36 TeV were recorded by the CMS detector in December 2009. The trajectories of charged particles produced in the collisions were reconstructed using the all-silicon Tracker and their momenta were measured in the 3.8 T axial magnetic field. Results from the Tracker commissioning are presented including studies of timing, efficiency, signal-to-noise, resolution, and ionization energy. Reconstructed tracks are used to benchmark the performance in terms of track and vertex resolutions, reconstruction of decays, estimation of ionization energy loss, as well as identification of photon conversions, nuclear interactions, and heavy-flavour decays.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Im Rahmen dieser Arbeit wurde die mehrstufige Resonanzionisation zur Spektroskopie im Gadolinium und Samarium eingesetzt und am Gadolinium für analytische Untersuchungen weiterentwickelt. Der Einsatzbereich der RIMS mit kontinuierlichen und gepulsten Lasern an komplexen Atomen wurde damit deutlich erweitert. Samarium und Gadolinium gehören zur Gruppe der Lanthanide, aufgrund der komplizierten Elektronenkonfigurationen zeichnen sie sich durch ein interessantes atomares Spektrum aus. Im Samarium wurde der erste von maximal drei resonanten Übergängen bezüglich Isotopieverschiebung und Hyperfein-strukturaufspaltung untersucht, knapp unterhalb des ersten Ionisationslimits nach möglichst ungestörten Rydbergserien gesucht und aus der Konvergenz dieser Serien das Ionisationspotenzial für 154Sm isotopenselektiv zu IP = 45519.30793(43) cm-1 bestimmt. Samarium und Gadolinium besitzen eine komplexe Kontinuumsstruktur, die sich durch schmale und starke autoionisierende Resonanzen auszeichnet. Daten früherer Untersuchungen zur Gadoliniumkontinuumsstruktur wurden in dieser Arbeit systematisch ausgewertet und durch eigene Messungen ergänzt. Zur theoretischen Beschreibung der Linienprofile interferierender autoionisierender Zustände wurde neben Fanoprofilen auch auf einen Ansatz aus der Kernphysik zurückgegriffen, den K-Matrix-Formalismus, und ein entsprechendes Simulationsprogramm eingesetzt. Anwendung auf ausgewählte spektrale Bereiche im Samarium und Gadolinium zeigt gute Reproduktion der Linienformen. Im Rahmen dieser Arbeit wurde darüber hinaus die Einsetzbarkeit von gepulsten Lasern für die Spurenanalyse untersucht und die Erreichbarkeit der notwendigen Spezifikationen für medizinische Fragestellungen demonstriert.
Resumo:
Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.
Resumo:
A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.
Resumo:
Measurements of the ratio of diffusion coefficient to mobility (D/ mu ) of electrons in SF6-N2 and CCl2F2-N2 mixtures over the range 80
Resumo:
The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.