996 resultados para interaction forces


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of activation of the lactoperoxidase (LPO) system by H2O2-NaSCN and hydrogen peroxide (H2O2) on the accessibility of sulphydryl groups (SH) in skimmed milk, and on the dynamic rheological properties of the resulting yoghurt were investigated. Four different concentrations of each reagent (20-80 mg H2O2-NaSCN/kg milk and 100-400 mg H2O2/kg milk) were compared. Clear negative correlations were noted between the accessibility of SH groups and both LPO activation rate and H2O2 concentration. Also the native PAGE pattern of the heat-treated samples showed that with increase in the H2O2-NaSCN and H2O2 concentrations, the level of interaction between beta-lactoglobulin (beta-Ig) and kappa-casein (K-CN) decreased. The complex modulus (G*) of skimmed milk yoghurts declined gradually with the decrease in the concentration of accessible SH groups accordingly. Tan delta values of yoghurt samples were found to be different from the control, but close to each other, indicating that protein interaction forces taking place in the formation of gel networks of treated yoghurts were different from the control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The many-body effect in the kinetic responses of ER fluids is studied by a molecular-dynamic simulation method. The mutual polarization effects of the particles are considered by self-consistently calculating the dipole strength on each particle according to the external field and the dipole field due to all the other particles in the fluids. The many-body effect is found to increase with the enhancement of the particle concentration and the permittivity ratio between the solvent and the particles. The calculated response times are shorter than that predicted with the 'point-dipole' model and agree very well with experimental results. The many-body effect enhances the shear stresses of the fluids by several times. But they are not proportional to the many-body correction factor lambda as expected. This is due to the fact that larger interaction forces between the particles lead to coarsening of the fibers formed in the suspensions. The results show that the many-body and multipolar interaction between the particles must be treated comprehensively in the simulations in order to get more reliable results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The challenge of human-computer interaction forces educationalists to think of new ways to understand the social, historical and contextual nature of learning. Discussion and exchange of ideas enable learners to learn together. However, the granularity of the Webbased learning context is extensive; consequently, e- Courseware design faces new dilemmas. Only through targeted research will it be known with any certainty whether Web-based learning gives rise to a new type of learning dissonance [1]. It has been proposed that converged theoretical paradigms that underpin particular digitised or context-mediated learning systems are forcing learners into new ways of thinking [2]. This paper presents an overview of the plans for an experimental project designed to understand the ontological requirements for experiential instructional environments. This project is a joint research initiative involving three Universities in the Asia/Pacific region. Results will be used to inform educationalists interested in developing instructional strategies for a global community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An automated laparoscopic instrument capable of non-invasive measurement of tip/tissue interaction forces for direct application in robotic assisted minimally invasive surgery systems_ is introduced in this paper. It has the capability to measure normal grasping forces as well as lateral interaction forces without any sensor mounted on the tip jaws. Further to non-invasive actuation of the tip, the proposed instrument is also able to change the grasping direction during surgical operation. Modular design of the instrument allows conversion between surgical modalities (e.g., grasping, cutting, and dissecting). The main focus of this paper is on evaluation of the grasping force capability of the proposed instrument. The mathematical formulation of fenestrated insert is presented and its non-linear behaviour is studied. In order to measure the stiffness of soft tissues, a device was developed that is also described in this paper. Tissue characterisation experiments were conducted and results are presented and analysed here. The experimental results verify the capability of the proposed instrument in accurately measuring grasping forces and in characterising artificial tissue samples of varying stiffness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An automated laparoscopic instrument capable of non-invasivemeasurement of tip/tissue interaction forces for direct application in robotic assisted minimally invasive surgery systems is introduced in this chapter. It has the capability to measure normal grasping forces as well as lateral interaction forces without any sensor mounted on the tip jaws. Further to non-invasive actuation of the tip, the proposed instrument is also able to change the grasping direction during surgical operation. Modular design of the instrument allows conversion between surgical modalities (e.g., grasping, cutting, and dissecting). The main focus of thispaper is on evaluation of the grasping force capability of the proposed instrument. The mathematical formulation of fenestrated insert is presented and its non-linear behaviour is studied. In order to measure the stiffness of soft tissues, a device was developed that is also described in this chapter. Tissue characterisation experiments were conducted and results are presented and analysed here. The experimental results verify the capability of the proposed instrument in accurately measuring grasping forces and in characterising artificial tissue samples of varying stiffness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Frequency Modulated - Atomic Force Microscope (FM-AFM) is apowerful tool to perform surface investigation with true atomic resolution. The controlsystem of the FM-AFM must keep constant both the frequency and amplitude ofoscillation of the microcantilever during the scanning process of the sample. However,tip and sample interaction forces cause modulations in the microcantilever motion.A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback signalto the FM-AFM control system. The PLL performance is vital to the FM-AFMperformace since the image information is in the modulated microcantilever motion.Nevertheless, little attention is drawn to PLL performance in the FM-AFM literature.Here, the FM-AFM control system is simulated, comparing the performancefor di erent PLL designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the structures of layers of amphiphilic diblock copolymers of poly(t-butyl styrene)-poly- (styrene sulfonate) (PtBS-PSS) adsorbed on both the bare mica surface (hydrophilic) and an octadecyltriethoxysilane (OTE)-modified mica surface (hydrophobic). When the surface is rendered hydrophobic, the nonsoluble block exhibits stronger interaction with the surface and higher adsorbed masses are achieved. Interaction forces between two such adsorbed layers on both substrates were measured using the surface forces apparatus. The effect of salt concentration (Cs) and molecular weight (N) on the height of the self-assembled layers (L0) was examined in each case. The resulting scaling relationship is in good agreement with predictions of the brush model, L0 ∞ N1.0 in the low-salt limit and L0N-1 ∞ (Cs/σ)-0.32 in the salted regime, when adsorption takes place onto the hydrophobized mica surface. For adsorption on the bare mica surface, L0N-0.7 ∞ Cs -0.17 agrees with the scaling prediction of the sparse tethering model. The results suggest that, on the hydrophilic bare mica surface, the adsorbed amount is not high enough to form a brush structure and only very little intermolecular stretching of the tethered chains occurs; in contrast, the presence of the hydrophobic OTE layer increases the tethering density such that the polyelectrolyte chains adopt a brush conformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

„Untersuchung des Aggregationsverhaltens amphiphiler Diblockcopolymere in überkritischem Kohlendioxid mittels dynamischer Lichtstreuung“ In der vorliegenden Arbeit wurde die Mizellenbildung von Diblockcopolymeren des Typs PS-b-PDMS in überkritischem Kohlendioxid (CO2,SC) mittels dynamischer Lichtstreuung (DLS) charakterisiert. Zu diesem Zweck wurden Mischungen aus den Diblockcopolymeren in CO2,SC mit Styrol als Monomer druckabhängig auf diese Fähigkeit hin untersucht. Eine Mizellenbildung konnte anhand der gemessenen hydrodynamischen Radien Rh gezeigt werden. Um eine Vergleichsmöglichkeit gegenüber den mit Styrol gefüllten Kern-Hüllen-Mizellen zu bekommen, wurde das Diblockcopolymer PS-b-PDMS (9/27) zunächst ohne Styrol auf die Fähigkeit hin untersucht ungefüllte Mizellen zu bilden. Durch Druckvariation konnte ein kritischer Mizellendruck von ca. 46,7 MPa bei einer Temperatur von 338 K im Experiment bestätigt werden, der gefundene Rh liegt bei ca. 34 nm. Dagegen setzt die Aggregation bei einer PS-b-PDMS (9/27)/Styrol/CO2,SC- Mischung bei einem wesentlich niedrigeren Druck ein. Durch Druckvariation zwischen 38 MPa und 45,7 MPa wurde eine Größenänderung der Mizellen beobachtet. Durch zeitabhängige-DLS-Messungen am gleichen System bei einem bestimmten Druck wurde ein langsames Schrumpfen der Mizellen gefunden. Um den Einfluß der Blockgröße der verwendeten Amphiphile auf die Mizellenbildung zu untersuchen wurde das System PS-b-PDMS(6/37)/Styrol/CO2,SC mit Hilfe der DLS im Bereich zwischen 39,4 MPa und 43,1 MPa untersucht. Die Druckänderung zeigte für Rh ein nahezu invariantes Verhalten, daß durch eine verlängerte PDMS-Blocklänge und eine damit verbundene Kompensation der verschiedenen Wechselwirkungskräfte zwischen Mizellenkern, -hülle und CO2,SC erklärt werden kann. Im System PS-b-PDMS(6/16)/Styrol/CO2,SC konnte experimentell mit Hilfe der DLS erst nach einer ver-änderten molaren Zusammensetzung eine Mizellenbildung ab 40 MPa ermöglicht werden. Allerdings ändert sich auch in diesem System der hydrodynamische Radius ebenfalls mit dem Druck. Je nach Druck-, Temperatur- und molarer Zusammensetzung variiert die Tendenz der Systeme, Mizellen zu bilden die eine Emulsion stabilisieren können. Für die in Dispersions-Polymerisationsreaktionen eingesetzten Diblockcopolymere bedeutet dieses Ergebnis differenzierte Applikationsmöglichkeiten. Mit den ermittelten Konzentrationsverhältnissen an Amphiphil und Monomer konnte ein Bereich gefunden werden, in dem die thermodynamischen Bedingungen für die Mizellenbildung einerseits und die Vorraussetzungen für die DLS andererseits gegeben sind.