948 resultados para information sciences
Resumo:
One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark.
Resumo:
Der Informationsbegriff als zentraler Gegenstand von Informationskompetenz wird in der bibliothekarischen Diskussion in der Regel nicht explizit thematisiert, sondern lässt sich aus Fachliteratur und Bibliothekspraxis nur implizit erschließen. Eine theoretische Beschäftigung mit dem Informationsbegriff ist jedoch unabdingbar, soll das Konzept "Informationskompetenz" auch außerhalb des bibliothekarischen Kontextes verständlich und nutzbar gemacht werden. Im vorliegenden Text, der sich als Beitrag zu einer Theorie der Informationskompetenz versteht, werden zunächst verschiedene Informationstypologien und -begriffe vorgestellt und diskutiert, die im Zusammenhang mit Informationskompetenz als relevant erachtet werden. Anschließend wird das Verhältnis von Informations- und Wissensbegriff näher beleuchtet. Ergebnis dieser Begriffsanalyse ist die These, dass einem Konzept von Informationskompetenz, das auch außerhalb von Bildungswesen und Wissenschaft eingesetzt werden können soll, ein Informationsbegriff zugrunde gelegt werden muss, der über das klassische bibliotheks- und informationswissenschaftliche Verständnis von Information als medial kommuniziertes, in Dokumenten repräsentiertes bzw. in Informationssystemen gespeichertes Wissen hinausgeht und weitere Dimensionen dessen, was "Information" sein kann, umfasst.
Resumo:
Informationskompetenz ist heute als Begriff , Konzept und praktisches Tätigkeitsfeld von Bibliotheken weltweit etabliert. Entstehung, Verbreitung und Entwicklung von „Informationskompetenz“ im deutschsprachigen Raum stehen in engem Zusammenhang mit dem in den USA und international seit den 1980er Jahren diskutierten und praktisch umgesetzten Konzept der „Information Literacy“. Auch wenn die beiden Begriffe in der Regel gleichbedeutend verwendet werden, zeigt ein Vergleich der vorwiegend aus englischsprachigen Ländern – insbesondere den USA, Australien und Großbritannien – stammenden Literatur zur Information Literacy mit deutschsprachigen Publikationen zur Informationskompetenz neben zahlreichen Gemeinsamkeiten auch unterschiedliche Tendenzen und Schwerpunkte, die sich einerseits auf die zeitverschobene historische Entwicklung, andererseits auf unterschiedliche bildungs- und berufspolitische, institutionelle und terminologische Rahmenbedingungen zurückführen lassen. Einige dieser Gemeinsamkeiten und Unterschiede werden aus historischer Perspektive sowie mit Blick auf aktuelle inhaltliche Themen und Desiderate näher beleuchtet.
Resumo:
Background As the use of electronic health records (EHRs) becomes more widespread, so does the need to search and provide effective information discovery within them. Querying by keyword has emerged as one of the most effective paradigms for searching. Most work in this area is based on traditional Information Retrieval (IR) techniques, where each document is compared individually against the query. We compare the effectiveness of two fundamentally different techniques for keyword search of EHRs. Methods We built two ranking systems. The traditional BM25 system exploits the EHRs' content without regard to association among entities within. The Clinical ObjectRank (CO) system exploits the entities' associations in EHRs using an authority-flow algorithm to discover the most relevant entities. BM25 and CO were deployed on an EHR dataset of the cardiovascular division of Miami Children's Hospital. Using sequences of keywords as queries, sensitivity and specificity were measured by two physicians for a set of 11 queries related to congenital cardiac disease. Results Our pilot evaluation showed that CO outperforms BM25 in terms of sensitivity (65% vs. 38%) by 71% on average, while maintaining the specificity (64% vs. 61%). The evaluation was done by two physicians. Conclusions Authority-flow techniques can greatly improve the detection of relevant information in EHRs and hence deserve further study.
Resumo:
International audience
Resumo:
International audience
Resumo:
Collecting ground truth data is an important step to be accomplished before performing a supervised classification. However, its quality depends on human, financial and time ressources. It is then important to apply a validation process to assess the reliability of the acquired data. In this study, agricultural infomation was collected in the Brazilian Amazonian State of Mato Grosso in order to map crop expansion based on MODIS EVI temporal profiles. The field work was carried out through interviews for the years 2005-2006 and 2006-2007. This work presents a methodology to validate the training data quality and determine the optimal sample to be used according to the classifier employed. The technique is based on the detection of outlier pixels for each class and is carried out by computing Mahalanobis distances for each pixel. The higher the distance, the further the pixel is from the class centre. Preliminary observations through variation coefficent validate the efficiency of the technique to detect outliers. Then, various subsamples are defined by applying different thresholds to exclude outlier pixels from the classification process. The classification results prove the robustness of the Maximum Likelihood and Spectral Angle Mapper classifiers. Indeed, those classifiers were insensitive to outlier exclusion. On the contrary, the decision tree classifier showed better results when deleting 7.5% of pixels in the training data. The technique managed to detect outliers for all classes. In this study, few outliers were present in the training data, so that the classification quality was not deeply affected by the outliers.
Resumo:
This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
The technological environment in which Australian SMEs operate can be best described as dynamic and vital. The rate of technological change provides the SME owner/manager a complex and challenging operational context. Wireless applications are being developed that provide mobile devices with Internet content and e-business services. In Australia the adoption of e-commerce by large organisations has been relatively high, however the same cannot be said for SMEs where adoption has been slower than other developed countries. In contrast however mobile telephone adoption and diffusion is relatively high by SMEs. This exploratory study identifies attitudes, perceptions and issues for mobile data technologies by regional SME owner/managers across a range of industry sectors. The major issues include the sector the firm belongs to, the current adoption status of the firm, the level of mistrust of the IT industry, the cost of the technologies and the applications and attributes of the technologies.
Resumo:
The technological environment in which contemporary small and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices, communication, e-commerce and security.
Resumo:
This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
The use of appropriate features to characterize an output class or object is critical for all classification problems. This paper evaluates the capability of several spectral and texture features for object-based vegetation classification at the species level using airborne high resolution multispectral imagery. Image-objects as the basic classification unit were generated through image segmentation. Statistical moments extracted from original spectral bands and vegetation index image are used as feature descriptors for image objects (i.e. tree crowns). Several state-of-art texture descriptors such as Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Patterns (LBP) and its extensions are also extracted for comparison purpose. Support Vector Machine (SVM) is employed for classification in the object-feature space. The experimental results showed that incorporating spectral vegetation indices can improve the classification accuracy and obtained better results than in original spectral bands, and using moments of Ratio Vegetation Index obtained the highest average classification accuracy in our experiment. The experiments also indicate that the spectral moment features also outperform or can at least compare with the state-of-art texture descriptors in terms of classification accuracy.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
A special transmit polarization signalling scheme is presented to alleviate the power reduction as a result of polarization mismatch from random antenna orientations. This is particularly useful for hand held mobile terminals typically equipped with only a single linearly polarized antenna, since the average signal power is desensitized against receiver orientations. Numerical simulations also show adequate robustness against incorrect channel estimations.