966 resultados para information operations
Resumo:
This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.
Resumo:
Information security has been recognized as a core requirement for corporate governance that is expected to facilitate not only the management of risks, but also as a corporate enabler that supports and contributes to the sustainability of organizational operations. In implementing information security, the enterprise information security policy is the set of principles and strategies that guide the course of action for the security activities and may be represented as a brief statement that defines program goals and sets information security and risk requirements. The enterprise information security policy (alternatively referred to as security policy in this paper) that represents the meta-policy of information security is an element of corporate ICT governance and is derived from the strategic requirements for risk management and corporate governance. Consistent alignment between the security policy and the other corporate business policies and strategies has to be maintained if information security is to be implemented according to evolving business objectives. This alignment may be facilitated by managing security policy alongside other corporate business policies within the strategic management cycle. There are however limitations in current approaches for developing and managing the security policy to facilitate consistent strategic alignment. This paper proposes a conceptual framework for security policy management by presenting propositions to positively affect security policy alignment with business policies and prescribing a security policy management approach that expounds on the propositions.
Resumo:
Learning capability (LC) is a special dynamic capability that a firm purposefully builds to develop a cognitive focus, so as to enable the configuration and improvement of other capabilities (both dynamic and operational) to create and respond to market changes. Empirical evidence regarding the essential role of LC in leveraging operational manufacturing capabilities is, however, limited in the literature. This study takes a routine-based approach to understand capability, and focuses on demonstrating leveraging power of LC upon two essential operational capabilities within the manufacturing context, i.e., operational new product development capability (ONPDC), and operational supplier integration capability (OSIC). A mixed-methods research framework was used, which combines sources of evidence derived from a survey study and a multiple case study. This study identified high-level routines of LC that can be designed and controlled by managers and practitioners, to reconfigure underlying routines of ONPDC and OSIC to achieve superior performance in a turbulent environment. Hence, the study advances the notion of knowledge-based dynamic capabilities, such as LC, as routine bundles. It also provides an impetus for managing manufacturing operations from a capability-based perspective in the fast changing knowledge era.
Resumo:
Constructing train schedules is vital in railways. This complex and time consuming task is however made more difficult by additional requirements to make train schedules robust to delays and other disruptions. For a timetable to be regarded as robust, it should be insensitive to delays of a specified level and its performance with respect to a given metric, should be within given tolerances. In other words the effect of delays should be identifiable and should be shown to be minimal. To this end, a sensitivity analysis is proposed that identifies affected operations. More specifically a sensitivity analysis for determining what operation delays cause each operation to be affected is proposed. The information provided by this analysis gives another measure of timetable robustness and also provides control information that can be used when delays occur in practice. Several algorithms are proposed to identify this information and they utilise a disjunctive graph model of train operations. Upon completion the sets of affected operations can also be used to define the impact of all delays without further disjunctive graph evaluations.
Resumo:
This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.
Resumo:
Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.
Resumo:
A strategy sets out the actions an organisation intends to take to achieve a particular goal, such as improved food safety practices. The development of a strategy allows the organisation to review and improve their existing operations, identify and implement new strategies, prioritise actions and strategically allocate resources to maximise efficiency and effectiveness. Implementing a holistic food safety strategy will help local governments continually improve their performance in this area. To support local governments develop a holistic food safety strategy a customisable template has been developed as part of the research project ‘Food Safety: Maximising Impact by Understanding the Food Business Context’ (more information about the research project is available online at www.acelg.org.au/foodsafety).
Resumo:
Building information models have created a paradigm shift in how buildings are built and managed by providing a dynamic repository for building data that is useful in many new operational scenarios. This change has also created an opportunity to use building information models as an integral part of security operations and especially as a tool to facilitate fine-grained access control to building spaces in smart buildings and critical infrastructure environments. In this paper, we identify the requirements for a security policy model for such an access control system and discuss why the existing policy models are not suitable for this application. We propose a new policy language extension to XACML, with BIM specific data types and functions based on the IFC specification, which we call BIM-XACML.
Resumo:
This thesis introduces a method of applying Bayesian Networks to combine information from a range of data sources for effective decision support systems. It develops a set of techniques in development, validation, visualisation, and application of Complex Systems models, with a working demonstration in an Australian airport environment. The methods presented here have provided a modelling approach that produces highly flexible, informative and applicable interpretations of a system's behaviour under uncertain conditions. These end-to-end techniques are applied to the development of model based dashboards to support operators and decision makers in the multi-stakeholder airport environment. They provide highly flexible and informative interpretations and confidence in these interpretations of a system's behaviour under uncertain conditions.
Resumo:
The aim of this study is to explore whether Australian mineral companies operating in high human rights risk countries provide more human rights disclosures than companies operating in low risk countries. A content analysis instrument containing 88 specific human rights performance items derived from a number of international human rights guidelines has been developed to investigate the annual reports, social responsibility reports and corporate websites of the top 50 Australian mineral companies (2010/2011). The findings show that human rights performance disclosures by companies with operations in high human rights risk countries are significantly higher than companies with operations in the low risk countries. By disclosing extended human rights performance information, companies operating in high risk countries appear to ease community concerns about human rights violations. The finding is consistent with legitimacy theory which posits that organisations respond to community concerns in relation to particular social issues.
Resumo:
Information and technology and its use in organisation transformation presents unprecedented opportunities and risks. Increasingly, the Governance of Enterprise Information and Technology (GEIT) competency in the board room and executive is needed. Whether your organization is small or large, public, private or not for profit or whether your industry is not considered high-tech, IT is impacting your sector – no exceptions. But there is a skill shortage in boards: GEIT capability is concerningly low. This capability is urgently needed across the board, including those directors who come from finance, legal, marketing, operations and HR backgrounds. Digital disruption also affects all occupations. Putting in place a vision will help ensure emergency responses will meet technology-related duty of care responsibilities. When GEIT-related forward thinking and planning is carried out at the same time that you put your business strategy and plan in place, your organization has a significantly increased chance of not only surviving, but thriving into the future. Those organizations that don’t build GEIT capability risk joining the growing list of once-leading firms left behind in the digital ‘cloud of smoke’. Those organizations that do will be better placed to reap the benefits and hedge against the risks of a digital world. This chapter provides actionable, research-based considerations and processes for boards to use, to build awareness, knowledge and skills in governing technology-related organization strategy, risk and value creation.
Resumo:
Introduction This case study is based on the experiences with the Electronic Journal of Information Technology in Construction (ITcon), founded in 1995. Development This journal is an example of a particular category of open access journals, which use neither author charges nor subscriptions to finance their operations, but rely largely on unpaid voluntary work in the spirit of the open source movement. The journal has, after some initial struggle, survived its first decade and is now established as one of half-a-dozen peer reviewed journals in its field. Operations The journal publishes articles as they become ready, but creates virtual issues through alerting messages to “subscribers”. It has also started to publish special issues, since this helps in attracting submissions, and also helps in sharing the work-load of review management. From the start the journal adopted a rather traditional layout of the articles. After the first few years the HTML version was dropped and papers are only published in PDF format. Performance The journal has recently been benchmarked against the competing journals in its field. Its acceptance rate of 53% is slightly higher and its average turnaround time of seven months almost a year faster compared to those journals in the sample for which data could be obtained. The server log files for the past three years have also been studied. Conclusions Our overall experience demonstrates that it is possible to publish this type of OA journal, with a yearly publishing volume equal to a quarterly journal and involving the processing of some fifty submissions a year, using a networked volunteer-based organization.
Resumo:
Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2(n) energy levels of the spin-system can be treated as an n-qubit system. It is demonstrated that QIP in such systems can be carried out using transition-selective pulses, in (CHCN)-C-3, (CH3CN)-C-13, Li-7 (I = 3/2) and Cs-133 (I = 7/2), oriented in liquid crystals yielding 2 and 3 qubit systems. Creation of pseudopure states, implementation of logic gates and arithmetic operations (half-adder and subtractor) have been carried out in these systems using transition-selective pulses.
Resumo:
Storage systems are widely used and have played a crucial rule in both consumer and industrial products, for example, personal computers, data centers, and embedded systems. However, such system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new systems and devices, such as distributed storage and flash memory, respectively. Information theory, on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes to solve challenges in data storage using a variety of coding techniques, so that storage becomes faster, more affordable, and more reliable.
We consider the system level and study the integration of RAID schemes and distributed storage. Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where disks correspond to symbols in the code and are located in a (distributed) network. Specifically, RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear that when two symbols are erased, one needs to access and transmit all the remaining information to rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction of information that one needs to access and transmit in order to correct a single erasure? In Part I we will show that the lower bound of 1/2 is achievable and that the result can be generalized to codes with arbitrary number of parities and optimal rebuilding.
We consider the device level and study coding and modulation techniques for emerging non-volatile memories such as flash memory. In particular, rank modulation is a novel data representation scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. In order to decrease the decoding complexity, we propose two variations of this scheme in Part II: bounded rank modulation where only small sliding windows of cells are sorted to generated permutations, and partial rank modulation where only part of the n cells are used to represent data. We study limits on the capacity of bounded rank modulation and propose encoding and decoding algorithms. We show that overlaps between windows will increase capacity. We present Gray codes spanning all possible partial-rank states and using only ``push-to-the-top'' operations. These Gray codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence of integers generating all possible partial permutations.