882 resultados para inductive reasoning
Resumo:
Este artículo sugiere un enfoque nuevo a la enseñanza de las dos estructuras gramaticales la pasiva refleja y el “se” impersonal para las clases universitarias de E/LE. Concretamente, se argumenta que las dos se deberían tratar como construcciones pasivas, basada en un análisis léxico-funcional de ellas que enfoca la lingüística contrastiva. Incluso para la instrucción de E/LE, se recomienda una aproximación contrastiva en la que se enfocan tanto la reflexión metalingüística como la competencia del estudiante en el L2. Específicamente, el uso de córpora lingüísticos en la clase forma una parte integral de la instrucción. El uso de un corpus estimula la curiosidad del estudiante, le expone a material de lengua auténtica, y promulga la reflexión inductiva independiente.
Resumo:
In this paper we provide an overview of a number of fundamental reasoning formalisms in artificial intelligence which can and have been used in modelling legal reasoning. We describe deduction, induction and analogical reasoning formalisms, and show how they can be used separately to model legal reasoning. We argue that these formalisms can be used together to model legal reasoning more accurately, and describe a number of attempts to integrate the approaches.
Resumo:
This paper introduces a logical model of inductive generalization, and specifically of the machine learning task of inductive concept learning (ICL). We argue that some inductive processes, like ICL, can be seen as a form of defeasible reasoning. We define a consequence relation characterizing which hypotheses can be induced from given sets of examples, and study its properties, showing they correspond to a rather well-behaved non-monotonic logic. We will also show that with the addition of a preference relation on inductive theories we can characterize the inductive bias of ICL algorithms. The second part of the paper shows how this logical characterization of inductive generalization can be integrated with another form of non-monotonic reasoning (argumentation), to define a model of multiagent ICL. This integration allows two or more agents to learn, in a consistent way, both from induction and from arguments used in the communication between them. We show that the inductive theories achieved by multiagent induction plus argumentation are sound, i.e. they are precisely the same as the inductive theories built by a single agent with all data. © 2012 Elsevier B.V.
Resumo:
This thesis explored the knowledge and reasoning of young children in solving novel statistical problems, and the influence of problem context and design on their solutions. It found that young children's statistical competencies are underestimated, and that problem design and context facilitated children's application of a wide range of knowledge and reasoning skills, none of which had been taught. A qualitative design-based research method, informed by the Models and Modeling perspective (Lesh & Doerr, 2003) underpinned the study. Data modelling activities incorporating picture story books were used to contextualise the problems. Children applied real-world understanding to problem solving, including attribute identification, categorisation and classification skills. Intuitive and metarepresentational knowledge together with inductive and probabilistic reasoning was used to make sense of data, and beginning awareness of statistical variation and informal inference was visible.
Resumo:
In this paper we discuss the strengths and weaknesses of a range of artificial intelligence approaches used in legal domains. Symbolic reasoning systems which rely on deductive, inductive and analogical reasoning are described and reviewed. The role of statistical reasoning in law is examined, and the use of neural networks analysed. There is discussion of architectures for, and examples of, systems which combine a number of these reasoning strategies. We conclude that to build intelligent legal decision support systems requires a range of reasoning strategies.
Resumo:
Induction is an interesting model of legal reasoning, since it provides a method of capturing initial states of legal principles and rules, and adjusting these principles and rules over time as the law changes. In this article I explain how Artificial Intelligence-based inductive learning algorithms work, and show how they have been used in law to model legal domains. I identify some problems with implementations undertaken in law to date, and create a taxonomy of appropriate cases to use in legal inductive inferencing systems. I suggest that inductive learning algorithms have potential in modeling law, but that the artificial intelligence implementations to date are problematic. I argue that induction should be further investigated, since it has the potential to be an extremely useful mechanism for understanding legal domains.
Resumo:
King, R.D., Garrett, S.M., Coghill, G.M. (2005). On the use of qualitative reasoning to simulate and identify metabolic pathways. Bioinformatics 21(9):2017-2026 RAE2008
Resumo:
Although Sloutsky agrees with our interpretation of our data, he argues that the totality of the evidence supports his claim that children make inductive generalisations on the basis of similarity. Here we take issue with his characterisation of the alternative hypotheses in his informal analysis of the data, and suggest that a thorough Bayesian analysis, although practically very difficult, is likely to result in a more finely balanced outcome than he suggests. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.
Resumo:
"Invited paper for the NATO Advanced Study Institute Seminar on Computer Oriented Learning Processes, Aug. 26-Sept. 7, 1974, Bonas, France."
Resumo:
Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. © 2014 Porcaro et al.
Resumo:
Reasoning systems have reached a high degree of maturity in the last decade. However, even the most successful systems are usually not general purpose problem solvers but are typically specialised on problems in a certain domain. The MathWeb SOftware Bus (Mathweb-SB) is a system for combining reasoning specialists via a common osftware bus. We described the integration of the lambda-clam systems, a reasoning specialist for proofs by induction, into the MathWeb-SB. Due to this integration, lambda-clam now offers its theorem proving expertise to other systems in the MathWeb-SB. On the other hand, lambda-clam can use the services of any reasoning specialist already integrated. We focus on the latter and describe first experimnents on proving theorems by induction using the computational power of the MAPLE system within lambda-clam.