935 resultados para indoor thermal comfort
Resumo:
Site-specific meteorological forcing appropriate for applications such as urban outdoor thermal comfort simulations can be obtained using a newly coupled scheme that combines a simple slab convective boundary layer (CBL) model and urban land surface model (ULSM) (here two ULSMs are considered). The former simulates daytime CBL height, air temperature and humidity, and the latter estimates urban surface energy and water balance fluxes accounting for changes in land surface cover. The coupled models are tested at a suburban site and two rural sites, one irrigated and one unirrigated grass, in Sacramento, U.S.A. All the variables modelled compare well to measurements (e.g. coefficient of determination = 0.97 and root mean square error = 1.5 °C for air temperature). The current version is applicable to daytime conditions and needs initial state conditions for the CBL model in the appropriate range to obtain the required performance. The coupled model allows routine observations from distant sites (e.g. rural, airport) to be used to predict air temperature and relative humidity in an urban area of interest. This simple model, which can be rapidly applied, could provide urban data for applications such as air quality forecasting and building energy modelling, in addition to outdoor thermal comfort.
Resumo:
In order to exploit the passive energy potential of the building envelope, it is important to provide a right combination of insulation thickness, heat capacity and night-time ventilation. In this paper, this issue will be tackled with reference to an historic building in Catania (Southern Italy). The building was built at the end of the XIX century, and its opaque envelope is entirely made with lava stones, which is typical of traditional architecture in this area. Starting from the current configuration of the building, many hypotheses for refurbishment are considered, combined with different strategies for passive cooling, such as night-time ventilation, use of shading devices and adoption of highly-reflective coatings. The effectiveness of each solution in terms of summer thermal comfort is evaluated through dynamic thermal simulations carried out with EnergyPlus. The results show the synergic effect of these strategies, as well as their individual impact, and allow to draw some general conclusions about the behaviour of heavyweight buildings under moderately hot weather conditions.
Resumo:
This paper uses examples from a Swedish study to suggest some ways in which cultural variation could be included in studies of thermal comfort. It is shown how only a slight shift of focus and methodological approach could help us discover aspects of human life that add to previous knowledge within comfort research of how human beings perceive and handle warmth and cold. It is concluded that it is not enough for buildings, heating systems and thermal control devices to be energy-efficient in a mere technical sense. If these are to help to decrease, rather than to increase, energy consumption, they have to support those parts of already existing habits and modes of thought that have the potential for low energy use. This is one reason why culture-specific features and emotional cores need to be investigated and deployed into the study and development of thermal comfort.
Resumo:
Dentre os materiais de construção utilizados nas instalações rurais, merecem destaque as coberturas, pois são grandes responsáveis pelo conforto térmico, influenciando no balanço térmico no interior das instalações. Este trabalho objetivou avaliar a influência das coberturas sobre a entalpia (H), Carga Térmica Radiante (CTR) e no Índice de Temperatura de Globo Negro e Umidade (ITGU), em abrigos individuais para bezerros leiteiros. O delineamento foi o inteiramente casualizado com três tratamentos: Z - telha de zinco; CA - telha de cimento amianto, e CAB - telha de cimento amianto pintada de branco na face superior. As médias foram comparadas pelo teste de Scott Knott, a 1% de probabilidade. Os resultados mostraram que não houve diferença estatística entre os tratamentos (P<0,01) e o ambiente externo, para a H. Para a CTR, houve diferença estatística entre todos os tratamentos, em que CAB demonstrou menor CTR, 489,28 W m-², seguido do tratamento CA, 506,72 W m-², e Z com maior valor de CTR, 523,55 W m-². Para o ITGU, observaram-se menores valores para CAB (76,8) e CA (77,4), diferindo-se, significativamente do Z, que obteve maior valor (81,6). As telhas com pintura branca em sua face superior promoveram menor CTR e menor ITGU, favorecendo o ambiente térmico da instalação.
Resumo:
Esta pesquisa foi conduzida com o objetivo de avaliar diferentes tipos de coberturas em instalações para aves, por meio do Índice de Temperatura de Globo Negro e Umidade (ITGU), Carga Térmica de Radiação (CTR) e Entalpia (H). O experimento foi conduzido na Universidade Estadual de Goiás, entre os meses de abril e maio de 2011, sendo composto por cinco tratamentos (coberturas): CA -Telha de cimento-amianto; BA -Telha de bambu; BAP -Telha de bambu pintada de branco; FB -Telha de fibra vegetal e betume; FBP -Telha de fibra vegetal e betume pintada de branco, com 15 repetições, sendo as repetições os dias de medição. Dentre os horários estudados, o considerado menos confortável foi às 14h, sendo que a cobertura de fibra vegetal e betume foi a que apresentou maior valor de ITGU (84,1) quando comparada às demais coberturas, caracterizando uma situação de menor conforto térmico, não sendo observada diferença para CTR e H entre os tratamentos na região estudada.
Resumo:
This article is about thermal comfort in the wearable product. The research correlates fashion and architecture, in so far as it elects the brise soleil - an architectural element capable of regulating temperature and ventilation inside buildings - as a study referential, in trying to transpose and adapt its mechanisms to the wearable apparel.
Resumo:
This study is aimed to analyze the thermal comfort in different areas in the city of São Paulo. Two different areas were selected, a densely built (Consolação district) and the other was Fontes do Ipiranga State Park (FISP), an area with only a few buildings and reduced impermeability. A micro-climatic ENVImet was used to simulate the interaction surface-atmosphere in the urban environment. The model resolution is between 0.5 and 10m. This model was developed by Bruse and Fleer (1998) and Bruse (2004). Through the thermal comfort index PMV (predicted mean vote) and MRT (mean radiant temperature) provided by the model, it revealed that the State Park displays PMV values close to comfortable compared to the other studied area. The analysis of thermal comfort index and the Wind flow showed the influence of high buildings in the local climatic environment.
Resumo:
This study aims to analyze the thermal comfort in urban areas for different land uses. The ENVImet microclimatic model has been used for urban boundary layer simulation, providing the following thermal comfort indexes: PMV (Predicted Mean Vote) and PPD (Predicted Percentage of Dissatisfaction). The chosen area covers the central area in the city of Ourinhos, located in southeastern Brazilian city, with subtropical climate. Four simulations were accomplished: an area with real buildings and vegetation on site, a “grassy” area where buildings have been replaced by grass in the central area, another grassy area, known as “grass/tree”, with additional trees in, and a final area called “Park” also grassy, where trees were added all over the area. The structures which showed thermal comfort within the ISO 7730 standards were the grassy area with no trees at 9 a.m., and a paved area, as well as the park area at 3 p.m. Other situations have presented values of PMV and PPD off the limits required by the rules; they were very close to those values. The only point that presented a far cry from the comfort required was the spot in the asphalt at 9 a.m. The other situations showed PMV and PPD values not far from the limits of comfort. Only the point on the asphalt showed values far from the limit of comfort at 9 a.m.
Resumo:
Exergetic analysis can provide useful information as it enables the identification of irreversible phenomena bringing about entropy generation and, therefore, exergy losses (also referred to as irreversibilities). As far as human thermal comfort is concerned, irreversibilities can be evaluated based on parameters related to both the occupant and his surroundings. As an attempt to suggest more insights for the exergetic analysis of thermal comfort, this paper calculates irreversibility rates for a sitting person wearing fairly light clothes and subjected to combinations of ambient air and mean radiant temperatures. The thermodynamic model framework relies on the so-called conceptual energy balance equation together with empirical correlations for invoked thermoregulatory heat transfer rates adapted for a clothed body. Results suggested that a minimum irreversibility rate may exist for particular combinations of the aforesaid surrounding temperatures. By separately considering the contribution of each thermoregulatory mechanism, the total irreversibility rate rendered itself more responsive to either convective or radiative clothing-influenced heat transfers, with exergy losses becoming lower if the body is able to transfer more heat (to the ambient) via convection.
Resumo:
The urban microclimate plays an important role in building energy consumption and thermal comfort in outdoor spaces. Nowadays, cities need to increase energy efficiency, reduce pollutant emissions and mitigate the evident lack of sustainability. In light of this, attention has focused on the bioclimatic concepts use in the urban development. However, the speculative unsustainability of the growth model highlights the need to redirect the construction sector towards urban renovation using a bioclimatic approach. The public space plays a key role in improving the quality of today’s cities, especially in terms of providing places for citizens to meet and socialize in adequate thermal conditions. Thermal comfort affects perception of the environment, so microclimate conditions can be decisive for the success or failure of outdoor urban spaces and the activities held in them. For these reasons, the main focus of this work is on the definition of bioclimatic strategies for existing urban spaces, based on morpho-typological components, urban microclimate conditions and comfort requirements for all kinds of citizens. Two case studies were selected in Madrid, in a social housing neighbourhood constructed in the 1970s based on Rational Architecture style. Several renovation scenarios were performed using a computer simulation process based in ENVI-met and diverse microclimate conditions were compared. In addition, thermal comfort evaluation was carried out using the Universal Thermal Climate Index (UTCI) in order to investigate the relationship between microclimate conditions and thermal comfort perception. This paper introduces the microclimate computer simulation process as a valuable support for decision-making for neighbourhood renovation projects in order to provide new and better solutions according to the thermal quality of public spaces and reducing energy consumption by creating and selecting better microclimate areas.