371 resultados para imine hydrogenation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of substituents and media polarity on the photoinducedE→Z geometrical isomerisation of the stilbene, azobenzene and N-benzylideneaniline chromophores has been compared and assessed. The efficiency of the process in all three systems is markedly dependent on the presence and characteristics of electron-donor and electron-acceptor substituents at the 4- and 4′-positions. The results are discussed in terms of relaxation of the E-excited singlet state. In the absence of a nitro substituent, relaxation to the S1 orthogonal state competes effectively with non-productive intramolecular electron transfer; in the presence of a nitro substituent, the T1 orthogonal state is formed from inter-system crossing. For systems with a 4-nitro and a 4′-electron-donor substituent, access to the triplet state is inhibited by polar solvents promoting formation of the inactive charge-transfer state from the S1 state, and no isomerisation is observed. Similar effects are observed in both solution and polymer films. Such variations in behaviour have important implications for the utilisation of the chromophores in nonlinear optical phenomena including photorefractivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of small molecules on the Ni{111} and NiO{111} surfaces is investigated under UHV and elevated pressures (~10-1 mbar) of hydrogen and water. The molecules considered are chosen for their relevance to understanding the mechanism of enantioselective hydrogenation on Raney Nickel modified by chiral molecules. Adsorption of water onto, and its subsequent reaction with, oxygen-covered Ni{111} is dependent on the initial atomic oxygen coverage. An OH species (O1s binding energy 531.5eV), oriented perpendicular to the surface, forms at atomic oxygen coverages <0.25ML. The reaction does not consume all the adsorbed oxygen for coverages ≥0.12ML. The p(2×2) atomic oxygen uperstructure is unreactive, while an OH species is formed on the p(√3×√3) superstructure at binding energy 530.9eV. L-alanine is adsorbed on Ni{111} as a model chiral modifier molecule. At low coverages, alanine forms a presumed tridentate alaninate species for coverages ≥0.11ML at 250K. A minority, bidentate zwitterionic species forms at coverages >0.11ML, but was not observed at 300K. Saturation occurs at 0.25ML. At high alanine coverages (≥0.19ML) and H2 pressure (≥1×10-2 mbar), the tridentate L-alaninate converts to bidentate zwitterionic L-alanine at 300K. Thermal evolution of L-alanine on Ni{111} under varying hydrogen pressures is examined. Adsorption of L-alanine onto hydroxylated NiO{111} at 300K in UHV, mimicking a catalyst surface under aqueous conditions, yields the tridentate alaninate which is immune to the effects of elevated hydrogen pressure. Exposing the L-alanine/Ni{111} adsorption system to water (≤10-1 mbar) oxidises the surface and recreates the L-alanine/hydroxylated NiO{111} system. Pyruvic acid on Ni{111} is examined as a model for hydrogenation substrate adsorption. Behaviour is coverage dependent and several conformations are possible at low coverages (≤0.1ML). Annealing at coverages <0.2ML causes a condensation reaction, releasing water onto the surface. High coverages do not condense and a saturation coverage of ~0.35ML is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here report the synthesis, characterization and catalytic performance of new supported Ru(III) and Ru(0) catalysts. In contrast to most supported catalysts, these new developed catalysts for oxidation and hydrogenation reactions were prepared using nearly the same synthetic strategy, and are easily recovered by magnetic separation from liquid phase reactions. The catalysts were found to be active in both forms, Ru(III) and Ru(0), for selective oxidation of alcohols and hydrogenation of olefins, respectively. The catalysts operate under mild conditions to activate molecular oxygen or molecular hydrogen to perform clean conversion of selected substrates. Aryl and alkyl alcohols were converted to aldehydes under mild conditions, with negligible metal leaching. If the metal is properly reduced, Ru(0) nanoparticles immobilized on the magnetic support surface are obtained, and the catalyst becomes active for hydrogenation reactions. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnetically recoverable Pt(0) catalyst was prepared by in situ H(2) reduction of Pt(2+) species bound to an amino modified silica-coated magnetic nanoparticles. Compared to ordinary silica (maximum uptake Pt 0.03 wt%), the amino-functionalized silica surfaces were loaded with 1.95 wt% of metal. The supported Pt(0) nanoparticles exhibit high catalytic activity in the hydrogenation of alkenes and ketones under solventless mild reaction conditions. Partially hydrogenated products could also be isolated. The magnetic property of the catalyst grants a fast and efficient product isolation compared to traditional methods used in heterogeneous systems that generally make use of time- and solvent-consuming procedures. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogenation of benzene and benzene derivatives was studied using Ru(0) nanoparticles prepared by a very simple method based on the in situ reduction of the commercially available precursor ruthenium dioxide under mild conditions (75 degrees C and hydrogen pressure 4atm) in imidazolium ionic liquids. Total turnovers (TTO) of 2700 mol/mol Ru were obtained for the conversion of benzene to cyclohexane under solventless conditions and TTO of 1200 mol/mol Ru were observed under ionic liquid biphasic conditions. When corrected for exposed ruthenium atoms, TTO values of 7940 (solventless) and 3530 (biphasic) were calculated for benzene hydrogenation. These reaction rates are higher than those observed for Ru nanoparticles prepared from decomposition of an organometallic precursor in similar conditions. The presence of the partially hydrogenated product cyclohexene was also detected at low conversion rates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have utilized infra-red and optical absorption measurements, grazing incidence X-ray diffraction (GIXRD) and extended X-ray absorption fine structure (EXAFS) measurements to investigate the influence of hydrogenation on the optical and structural properties of GaAs thin films prepared by rf-magnetron sputtering. Hydrogenation induces distinct changes in the optical properties, namely shifts in the absorption edges and reduction of the Urbach energy. Such modifications are correlated to a reduction in structural disorder as determined by EXAFS and the increase of crystallinity determined by GIXRD. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Hydrogenation of passion fruit (passiflora edulis) seed oil was carried out with a commercial nickel/silica catalyst under different experimental conditions. The influence of reaction parameters (reaction temperature, hydrogen pressure, amount of catalyst, agitation rate and reaction time) on the response variable (iodine value) was studied using a central composite rotatable design and six center points for replication. Under the experimental conditions used, the model response equations for the iodine value showed good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C2-Symmetrical, enantiopure 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high-yielding, three-step sequence starting from 2,6-pyridinedicarbaldehyde and (S)-valinol or (S)-phenylglycinol. The new compounds were tested as ligands in palladium-catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99% enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl- and benzylmalonate dimethyl esters with 1,3-diphenyl-2-propenyl ethyl carbonate. Asymmetric synthesis of 2-(2-pyridyl)aziridines from chiral 2-pyridineimines bearing a stereogenic center at the nitrogen atom was development. The envisioned route involves the addition of chloromethyllithium to the imine derived from 2-pyridinealdehyde and (S)-valinol, protected as O-trimethylsilyl ether. The analogous reaction performed on the imine derived from (S)-valine methyl ester gave the product containing the aziridine ring as well as the α-chloro ketone group coming from the attack of chloromethyllithium to the ester function. Other stereogenic alkyl substituents at nitrogen gave less satisfactory results. Moreover, the aziridination protocol did not work on other aromatic imines, e.g. 3-pyridineimine and benzaldimine, which are not capable of bidentate chelation. The N-substituent could not be removed, but aziridine underwent ring-opening by attack of nitrogen, sulfur, and oxygen nucleophiles. Complete or prevalent regioselectivity was obtained using cerium trichloride heptahydrate as a catalyst. In some cases, the N-substituent could be removed by an oxidative protocol. The addition of organometallic (lithium, magnesium, zinc) reagents to 2-pyrroleimines derived from (S)-valinol and (S)-phenylglycinol gave the N-substituted-1-(2-pyrrolyl)alkylamines with high yields and diastereoselectivities. The (S,S)-diastereomers were useful intermediates for the preparation of enantiopure 1-[1-(2-pyrrolyl)alkyl]aziridines by routine cyclization of the β-aminoalcohol moiety and of (S)-N-benzoyl 1-[1-(2-pyrrolyl)alkyl]amines and their N-substituted derivatives by oxidative cleavage of the chiral auxiliary. 1-Allyl-2-pyrroleimines obtained from (S)-phenylglycinol and (S)-valinol underwent highly diastereoselective addition of allylmetal reagents, used in excess amounts, to give the corresponding secondary amines with concomitant allyl to 1-propenyl isomerisation of the 1-pyrrole substituent. Protection of the 2-aminoalcohol moiety as oxazolidinone, amide or Boc derivate followed by ring closing metathesis of the alkene groups gave the unsaturated bicyclic compound, whose hydrogenation afforded the indolizidine derivative as a mixture of separable diastereomers. The absolute configuration of the main diastereomer was assessed by X-ray crystallographic analysis.