983 resultados para hydro-meteorological disasters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a mixed-integer nonlinear approach is proposed to support decision-making for a hydro power producer, considering a head-dependent hydro chain. The aim is to maximize the profit of the hydro power producer from selling energy into the electric market. As a new contribution to earlier studies, a risk aversion criterion is taken into account, as well as head-dependency. The volatility of the expected profit is limited through the conditional value-at-risk (CVaR). The proposed approach has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is on the problem of short-term hydro, scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel mixed-integer nonlinear approach is proposed to solve the short-term hydro scheduling problem in the day-ahead electricity market, considering not only head-dependency, but also start/stop of units, discontinuous operating regions and discharge ramping constraints. Results from a case study based on one of the main Portuguese cascaded hydro energy systems are presented, showing that the proposedmixed-integer nonlinear approach is proficient. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing integration of larger amounts of wind energy into power systems raises important operational issues, such as the balance between power generation and demand. The pumped storage hydro (PSH) units are one possible solution to mitigate this problem, once they can store the excess of energy in the periods of higher generation and lower demand. However, the behaviour of a PSH unit may differ considerably from the expected in terms of wind power integration when it operates in a liberalized electricity market under a price-maker context. In this regard, this paper models and computes the optimal PSH weekly scheduling in a price-taker and price-maker scenarios, either when the PSH unit operates in standalone and integrated in a portfolio of other generation assets. Results show that the price-maker standalone PSH will integrate less wind power in comparison with the price-taker situation. Moreover, when the PSH unit is integrated in a portfolio with a base load power plant, the role of the price elasticity of demand may completely change the operational profile of the PSH unit. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of large amounts of wind energy in power systems raises important operation issues such as the balance between power demand and generation. The pumped storage hydro (PSH) units are seen as one solution for this issue, avoiding the need for wind power curtailments. However, the behavior of a PSH unit might differ considerably when it operates in a liberalized market with some degree of market power. In this regard, a new approach for the optimal daily scheduling of a PSH unit in the day-ahead electricity market was developed and presented in this paper, in which the market power is modeled by a residual inverse demand function with a variable elasticity. The results obtained show that increasing degrees of market power of the PSH unit correspond to decreasing levels of storage and, therefore, the capacity to integrate wind power is considerably reduced under these circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a mixed-integer quadratic programming approach is proposed for the short-term hydro scheduling problem, considering head-dependency, discontinuous operating regions and discharge ramping constraints. As new contributions to earlier studies, market uncertainty is introduced in the model via price scenarios, and risk aversion is also incorporated by limiting the volatility of the expected profit through the conditional value-at-risk. Our approach has been applied successfully to solve a case Study based on one of the main Portuguese cascaded hydro systems, requiring a negligible computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand-foot-and-mouth disease (HFMD) is becoming one of the extremely common airborne and contact transmission diseases in Guangzhou, southern China, leading public health authorities to be concerned about its increased incidence. In this study, it was used an ecological study plus the negative binomial regression to identify the epidemic status of HFMD and its relationship with meteorological variables. During 2008-2012, a total of 173,524 HFMD confirmed cases were reported, 12 cases of death, yielding a fatality rate of 0.69 per 10,000. The annual incidence rates from 2008 to 2012 were 60.56, 132.44, 311.40, 402.76, and 468.59 (per 100,000), respectively, showing a rapid increasing trend. Each 1 °C rise in temperature corresponded to an increase of 9.47% (95% CI 9.36% to 9.58%) in the weekly number of HFMD cases, while a one hPa rise in atmospheric pressure corresponded to a decrease in the number of cases by 7.53% (95% CI -7.60% to -7.45%). Similarly, each one percent rise in relative humidity corresponded to an increase of 1.48% or 3.3%, and a one meter per hour rise in wind speed corresponded to an increase of 2.18% or 4.57%, in the weekly number of HFMD cases, depending on the variables considered in the model. These findings revealed that epidemic status of HFMD in Guangzhou is characterized by high morbidity but low fatality. Weather factors had a significant influence on the incidence of HFMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centers and universities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the biggest challenges for humanity is global warming and consequently, climate changes. Even though there has been increasing public awareness and investments from numerous countries concerning renewable energies, fossil fuels are and will continue to be in the near future, the main source of energy. Carbon capture and storage (CCS) is believed to be a serious measure to mitigate CO2 concentration. CCS briefly consists of capturing CO2 from the atmosphere or stationary emission sources and transporting and storing it via mineral carbonation, in oceans or geological media. The latter is referred to as carbon capture and geological storage (CCGS) and is considered to be the most promising of all solutions. Generally it consists of a storage (e.g. depleted oil reservoirs and deep saline aquifers) and sealing (commonly termed caprock in the oil industry) formations. The present study concerns the injection of CO2 into deep aquifers and regardless injection conditions, temperature gradients between carbon dioxide and the storage formation are likely to occur. Should the CO2 temperature be lower than the storage formation, a contractive behaviour of the reservoir and caprock is expected. The latter can result in the opening of new paths or re-opening of fractures, favouring leakage and compromising the CCGS project. During CO2 injection, coupled thermo-hydro-mechanical phenomena occur, which due to their complexity, hamper the assessment of each relative influence. For this purpose, several analyses were carried out in order to evaluate their influences but focusing on the thermal contractive behaviour. It was finally concluded that depending on mechanical and thermal properties of the pair aquifer-seal, the sealing caprock can undergo significant decreases in effective stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the report for the unit “Métodos Interactivos de Participação e Decisão A” (Interactive methods of participation and decision A), coordinated by Prof. Lia Maldonado Teles de Vasconcelos and Prof. Nuno Miguel Ribeiro Videira Costa. This unit was provided for the PhD Program in Technology Assessment in 2015/2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Analisar os resultados iniciais da utilização do enxerto tubular orgânico, utilizados para anastomoses sistêmico-pulmonares. MÉTODOS: De março/2002 a abril/2003, 10 pacientes foram submetidos à realização de shunt sistêmico pulmonar tipo Blalock-Taussig modificado utilizando um novo tipo de enxerto biológico originado da artéria mesentérica bovina tratada com poliglicol denominado L-D-Hydro. A idade variou de 3 dias a 7 anos e 60% dos pacientes eram do sexo masculino. O diagnóstico das cardiopatias foi determinado pela ecocardiografia, todos apresentando sinais clínicos de hipóxia severa (cianose). As cardiopatias foram: tetralogia de Fallot (40%), atresia tricúspide (50%), defeito do septo atrioventricular (10%). RESULTADOS: Em 10 pacientes, ocorreu um óbito por sepse e em nove houve melhora imediata na saturação de O2 ao oxímetro de pulso e da pressão parcial de oxigênio à gasometria arterial. Nenhum paciente apresentou obstrução do shunt no pós-operatório imediato ou qualquer outra complicação. Todos os pacientes mostraram shunt pérvio ao exame ecocardiográfico no pós-operatório imediato e tardio, realizado no 3º mês de pós-operatório. Nenhum paciente apresentou sangramento no intra e pós-operatório. CONCLUSÃO: O enxerto tubular L-D-HYDRO demonstrou ser promissor para a realização de shunt sistêmico pulmonar, como alternativa para produtos inorgânicos existentes no mercado, entretanto, temos de ter maior número de implantes e acompanhamento tardio para uma avaliação definitiva.