930 resultados para high expression
Resumo:
Altered expression of histone deacetylases (HDACs) is a common feature in several human malignancies and may represent an interesting target for cancer treatment, including haematological malignancies. We evaluated the mRNA gene expression profile of 12 HDAC genes by quantitative real-time polymerase chain reaction in 94 consecutive childhood acute lymphoblastic leukaemia (ALL) samples and its association with clinical/biological features and survival. ALL samples showed higher expression levels of HDAC2, HDAC3, HDAC8, HDAC6 and HDAC7 when compared to normal bone marrow samples. HDAC1 and HDAC4 showed high expression in T-ALL and HDAC5 was highly expressed in B-lineage ALL. Higher than median expression levels of HDAC3 were associated with a significantly lower 5-year event-free survival (EFS) in the overall group of patients (P = 0.03) and in T-ALL patients (P = 0.01). HDAC7 and HADC9 expression levels higher than median were associated with a lower 5-year EFS in the overall group (P = 0.04 and P = 0.003, respectively) and in B-lineage CD10-positive patients (P = 0.009 and P = 0.005, respectively). Our data suggest that higher expression of HDAC7 and HDAC9 is associated with poor prognosis in childhood ALL and could be promising therapeutic targets for the treatment of refractory childhood ALL.
Resumo:
PD-1 and PD-L1 can be involved in tumor escape, and little is known about the role of these molecules in oral tumors or pre-malignant lesions. In the present study, we investigated the expression of PD-1 and PD-L1 in the blood and lesion samples of patients with actinic cheilitis (AC) and oral squamous cell carcinoma (OSCC). Our results showed that lymphocytes from peripheral blood and tissue samples exhibited high expression of PD-1 in both groups analyzed. Patients with AC presented higher percentage as well as the absolute numbers of CD4(+)PD-1(+) and CD8(+)PD-1(+) lymphocytes in peripheral blood mononuclear cells (PBMC) than healthy individuals, while patients with OSCC presented an increased frequency of CD8(+)PD1(+) in PBMC when compared with controls. On the other hand, increased frequency of CD4(+) and CD8(+) T cells expressing PD-1(+) accumulate in samples from OSCC, and the expression of PD-L1 was intense in OSCC and moderate in AC lesion sites. Lower levels of IFN-gamma and higher levels of TGF-beta were detected in OSCC samples. Our data demonstrate that PD-1 and PD-L1 molecules are present in blood and samples of AC and OSCC patients. Further studies are required to understand the significance of PD-1 and PD-L1 in oral tumors microenvironment.
Resumo:
Although a variety of nanoparticles (NPs) functionalized with amphotericin B, an antifungal agent widely used in the clinic, have been studied in the last years their cytotoxicity profile remains elusive. Here we show that human endothelial cells take up high amounts of silica nanoparticles (SNPs) conjugated with amphotericin B (AmB) (SNP-AmB) (65.4 12.4 pg of Si per cell) through macropinocytosis while human fibroblasts internalize relatively low amounts (2.3 0.4 pg of Si per cell) because of their low capacity for macropinocytosis. We further show that concentrations of SNP-AmB and SNP up to 400 mg/mL do not substantially affect fibroblasts. In contrast, endothelial cells are sensitive to low concentrations of NPs (above 10 mg/mL), in particular to SNP-AmB. This is because of their capacity to internalize high concentration of NPs and high sensitivity of their membrane to the effects of AmB. Low-moderate concentrations of SNP-AmB (up to 100 mg/mL) induce the production of reactive oxygen species (ROS), LDH release, high expression of pro-inflammatory cytokines and chemokines (IL-8, IL-6, G-CSF, CCL4, IL-1b and CSF2) and high expression of heat shock proteins (HSPs) at gene and protein levels. High concentrations of SNP-AmB (above 100 ug/mL) disturb membrane integrity and kill rapidly human cells(60% after 5 h). This effect is higher in SNP-AmB than in SNP.
Resumo:
Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.
Resumo:
Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4(+) Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3'-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3'-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4(+) adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3'-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4(+) Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene.
Resumo:
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces.
Resumo:
PPARs are a family of nuclear hormone receptors involved in various processes that could influence ovarian function. We investigated the cellular localization and expression of PPARs during follicular development in ovarian tissue collected from rats 0, 6, 12, 24, and 48 h post-PMSG. A second group of animals received human CG (hCG) 48 h post-PMSG. Their ovaries were removed 0, 4, 8, 12, and 24 h post-hCG to study the periovulatory period. mRNAs corresponding to the PPAR isotypes (alpha, delta, and gamma) were localized by in situ hybridization. Changes in the levels of mRNA for the PPARs were determined by ribonuclease protection assays. PPAR gamma mRNA was localized primarily to granulosa cells, and levels of expression did not change during follicular development. Four hours post-hCG, levels of mRNA for PPAR gamma decreased (P < 0.05) but not uniformly in all follicles. At 24 h post-hCG, levels of PPAR gamma mRNA were reduced 64%, but some follicles maintained high expression. In contrast, mRNAs for PPAR alpha and delta were located primarily in theca and stroma, and their levels did not change during the intervals studied. To investigate the physiologic significance of PPAR gamma in the ovary, granulosa cells from PMSG-primed rats were cultured for 48 h with prostaglandin J(2) (PGJ(2)) and ciglitazone, PPAR gamma activators. Both compounds increased progesterone and E2 secretion (P < 0.05). These data suggest that PPAR gamma is involved in follicular development, has a negative influence on the luteinization of granulosa cells, and/or regulates the periovulatory shift in steroid production. The more general and steady expression of PPARs alpha and delta indicate that they may play a role in basal ovarian function.
Resumo:
The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.
Resumo:
Le cancer est défini comme la croissance incontrôlée des cellules dans le corps. Il est responsable de 20 % des décès en Europe. Plusieurs expériences montrent que les tumeurs sont issues et se développent grâce à un petit nombre de cellules, que l'on appelle cellules souches cancéreuses (CSC). Ces CSC sont également responsables de l'apparition de métastases et de la résistance aux médicaments anticancéreux. De ce fait, l'identification des gènes qui contribuent aux propriétés de ces CSC (comme la survie des tumeurs, les métastases et la résistance aux médicaments) est nécessaire pour mieux comprendre la biologie des cancers et d'améliorer la qualité des soins des patients avec un cancer. A ce jour, de nombreux marqueurs ont été proposés ainsi que de nouvelles thérapies ciblées contre les CSC. Toutefois, et malgré les énormes efforts de la recherche dans ce domaine, la quasi-totalité des marqueurs de CSC connus à ce jour sont aussi exprimés dans les cellules saines. Ce projet de recherche visait à trouver un nouveau candidat spécifique des CSC. Le gène BORIS (pour Brother of Regulator of Imprinted Sites), nommé aussi CTCFL (CTCF-like), semble avoir certaines caractéristiques de CSC et pourrait donc devenir une cible prometteuse pour le traitement du cancer. BORIS/CTCFL est une protéine nucléaire qui se lie à l'ADN, qui est exprimée dans les tissus normaux uniquement dans les cellules germinales et qui est réactivée dans un grand nombre de tumeurs. BORIS est impliqué dans la reprogrammation épigénétique au cours du développement et dans la tumorigenèse. En outre, des études récentes ont montré une association entre l'expression de BORIS et un mauvais pronostic chez des patients atteints de différents types de cancers. Nous avons développé une nouvelle technologie basée sur les Molecular Beacon pour cibler l'ARNm de BORIS et cela dans les cellules vivantes. Grâce à ce système expérimental, nous avons montré que seule une toute petite sous-population (0,02 à 5%) de cellules tumorales exprimait fortement BORIS. Les cellules exprimant BORIS ont pu être isolées et elles présentaient les caractéristiques de CSC, telles qu'une forte expression de hTERT et des gènes spécifiques des cellules souches (NANOG, SOX2 et OCT4). En outre, une expression élevée de BORIS a été mise en évidence dans des populations enrichies en CSC ('side population' et sphères). Ces résultats suggèrent que BORIS pourrait devenir un nouveau et important marqueur de CSC. Dans des études fonctionnelles sur des cellules de cancer du côlon et du sein, nous avons montré que le blocage de l'expression de BORIS altère largement la capacité de ces cellules à former des sphères, démontrant ainsi un rôle essentiel de BORIS dans l'auto- renouvellement des tumeurs. Nos expériences montrent aussi que BORIS est un facteur important qui régule l'expression de gènes jouant un rôle clé dans le développement et la progression tumorale, tels le gène hTERT et ceux impliqués dans les cellules souches, les CSC et la transition épithélio-mésenchymateuse (EMT). BORIS pourrait affecter la régulation de la transcription de ces gènes par des modifications épigénétiques et de manière différente en fonction du type cellulaire. En résumé, nos résultats fournissent la preuve que BORIS peut être classé comme un gène marqueur de cellules souches cancéreuse et révèlent un nouveau mécanisme dans lequel BORIS jouerait un rôle important dans la carcinogénèse. Cette étude ouvre de nouvelles voies pour mieux comprendre la biologie de la progression tumorale et offre la possibilité de développement de nouvelles thérapies anti-tumorales et anti-CSC avec BORIS comme molécule cible. - Cancer is defined as the uncontrolled growth of cells in the body. It causes 20% of deaths in the European region. Current evidences suggest that tumors originate and are maintained thanks to a small subset of cells, named cancer stems cells (CSCs). These CSCs are also responsible for the appearance of metastasis and therapeutic resistance. Consequently, the identification of genes that contribute to the CSC properties (tumor survival, metastasis and therapeutic resistance) is necessary to better understand the biology of malignant diseases and to improve care management. To date, numerous markers have been proposed to use as new CSC- targeted therapies. Despite the enormous efforts in research, almost all of the known CSCs markers are also expressed in normal cells. This project aimed to find a new CSC-specific candidate. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA binding protein involves in epigenetic reprogramming in normal development and in tumorigenesis. Recent studies have shown an association of BORIS expression with a poor prognosis in different types of cancer patients. Therefore, BORIS seems to have the same characteristics of CSCs markers and it could be a promising target for cancer therapy. BORIS is normally expressed only in germinal cells and it is re-expressed in a wide variety of tumors. We developed a new molecular beacon-based technology to target BORIS mRNA expressing cells. Using this system, we showed that the BORIS expressing cells are only a small subpopulation (0.02-5%) of tumor cells. The isolated BORIS expressing cells exhibited the characteristics of CSCs, with high expression of hTERT and stem cell genes (NANOG, SOX2 and OCT4). Furthermore, high BORIS expression was observed in the CSC-enriched populations (side population and spheres). These results suggest that BORIS might be a novel and powerful CSCs marker. In functional studies, we observed that BORIS knockdown significantly impairs the capacity to form spheres in colon and breast cancer cells, thus demonstrating a critical role of BORIS in the self-renewal of tumors. The results showed in the functional analysis indicate that BORIS is an important factor that regulates the expression of key-target genes for tumor development and progression, such as hTERT, stem cells, CSCs markers and EMT (epithelial mesenchymal transition)-related marker genes. BORIS could affect the transcriptional regulation of these genes by epigenetic modification and in a cell type dependent manner. In summary, our results support the evidence that BORIS can be classified as a cancer stem cell marker gene and reveal a novel mechanism in which BORIS would play a critical role in tumorigenesis. This study opens new prospective to understand the biology of tumor development and provides opportunities for potential anti-tumor drugs.
Resumo:
BACKGROUND AND PROCEDURE: To determine the possible role of Fas/FasL system in the particularly heterogeneous behaviour of neuroblastoma (NB), we have measured the functional expression of Fas and its ligand, FasL, in primary neuroblastoma samples and cell lines by immunohistochemistry and flow cytometry. RESULTS: Our results reveal that while Fas expression is associated with low stage and more mature tumors, heterogeneous FasL expression was mostly detected in high stage tumors, with our apparent correlation to MYCN amplification. Flow cytometric analysis of cell lines demonstrated a high expression of Fas in epithelial-type, HLA class I positive cell lines, which was lost upon activation with phorbol esters. In contrast, Fas ligand was detected in only a small subset of cell lines. CONCLUSIONS: In some cell lines, cytotoxic assays revealed the ability of NB-associated Fas receptor to transduce an apoptotic signal upon triggering. The pattern of functional Fas/FasL expression in tumours and cell lines suggests that this system may be involved in the evasion of highly malignant neuroblastoma cells to host immune response.
Resumo:
Tissue-specific expression studies of Glutaryl-CoA dehydrogenase (Gcdh) in adult rats revealed expression in the whole rat brain, almost exclusively in neurons, and surprisingly high expression in the juxtamedullar cortex of the kidney. The organic anion transporter 1 (OAT1) mediates basolateral uptake of glutarate derivatives from proximal tubule cells and contributes to their renal clearance. In brain, OAT1 is expressed at the choroid plexus, in neurons of cortex and hippocampus. We hypothesized that Gcdh and Oat1 are co-expressed in the same cells in kidney and brain and analyzed their mRNA expression by in situ hybridization on cryosections of adult rat brain, kidney and liver. In brain, Gcdh and Oat1 were found co-expressed in most neurons. Only the Purkinje neurons of the cerebellum were found to be Oat1 negative. In the kidney Gcdh and Oat1 are widely co-expressed with a specific high expression in proximal tubule cells. In conclusion there seems to be a functional coupling of Gcdh and Oat1 on a renal and neuronal level. Further studies are ongoing to confirm these findings in human tissues.
Resumo:
Spermatogenesis is a temporally regulated developmental process by which the gonadotropin-responsive somatic Sertoli and Leydig cells act interdependently to direct the maturation of the germinal cells. The metabolism of Sertoli and Leydig cells is regulated by the pituitary gonadotropins FSH and LH, which, in turn, activate adenylate cyclase. Because the cAMP-second messenger pathway is activated by FSH and LH, we postulated that the cAMP-responsive element-binding protein (CREB) plays a physiological role in Sertoli and Leydig cells, respectively. Immunocytochemical analyses of rat testicular sections show a remarkably high expression of CREB in the haploid round spermatids and, to some extent, in pachytene spermatocytes and Sertoli cells. Although most of the CREB antigen is detected in the nuclei, some CREB antigen is also present in the cytoplasm. Remarkably, the cytoplasmic CREB results from the translation of a unique alternatively spliced transcript of the CREB gene that incorporates an exon containing multiple stop codons inserted immediately up-stream of the exons encoding the DNA-binding domain of CREB. Thus, the RNA containing the alternatively spliced exon encodes a truncated transcriptional transactivator protein lacking both the DNA-binding domain and nuclear translocation signal of CREB. Most of the CREB transcripts detected in the germinal cells contain the alternatively spliced exon, suggesting a function of the exon to modulate the synthesis of CREB. In the Sertoli cells we observed a striking cyclical (12-day periodicity) increase in the levels of CREB mRNA that coincides with the splicing out of the restrictive exon containing the stop codons. Because earlier studies established that FSH-stimulated cAMP levels in Sertoli cells are also cyclical, and the CREB gene promoter contains cAMP-responsive enhancers, we suggest that the alternative RNA splicing controls a positive autoregulation of CREB gene expression mediated by cAMP.
Resumo:
Variation in protein sequence and gene expression each contribute to phenotypic diversity, and may be subject to similar selective pressures. Eusocial insects are particularly useful for investigating the evolutionary link between protein sequence and condition-dependent patterns of gene expression because gene expression plays a central role in determining differences between eusocial insect sexes and castes. We investigated the relationship between protein coding sequence evolution and gene expression patterns in the fire ants Solenopsis invicta, S. richteri, and their hybrids to gain greater insight into how selection jointly operates on gene expression and coding sequence. We found that genes with high expression variability within castes and sexes were frequently differentially expressed between castes and sexes, as well as between species and hybrids. These results indicate that genes showing high variation in expression in one context also tend to show high variation in expression in other contexts. Our analyses further revealed that variation in both intra- and interspecific gene expression was positively associated with rate of protein sequence evolution in Solenopsis. This suggests that selective constraints on a gene operate both at the level of protein sequence and at the level of gene expression regulation. Overall, our study provides one of the strongest demonstrations that selective constraints mediate both protein sequence evolution and gene expression variability across different biological contexts and timescales.
Resumo:
Peripheral T-cell lymphoma (PTCL) encompasses a heterogeneous group of neoplasms with generally poor clinical outcome. Currently 50% of PTCL cases are not classifiable: PTCL-not otherwise specified (NOS). Gene-expression profiles on 372 PTCL cases were analyzed and robust molecular classifiers and oncogenic pathways that reflect the pathobiology of tumor cells and their microenvironment were identified for major PTCL-entities, including 114 angioimmunoblastic T-cell lymphoma (AITL), 31 anaplastic lymphoma kinase (ALK)-positive and 48 ALK-negative anaplastic large cell lymphoma, 14 adult T-cell leukemia/lymphoma and 44 extranodal NK/T-cell lymphoma that were further separated into NK-cell and gdT-cell lymphomas. Thirty-seven percent of morphologically diagnosed PTCL-NOS cases were reclassified into other specific subtypes by molecular signatures. Reexamination, immunohistochemistry, and IDH2 mutation analysis in reclassified cases supported the validity of the reclassification. Two major molecular subgroups can be identified in the remaining PTCL-NOS cases characterized by high expression of either GATA3 (33%; 40/121) or TBX21 (49%; 59/121). The GATA3 subgroup was significantly associated with poor overall survival (P = .01). High expression of cytotoxic gene-signature within the TBX21 subgroup also showed poor clinical outcome (P = .05). In AITL, high expression of several signatures associated with the tumor microenvironment was significantly associated with outcome. A combined prognostic score was predictive of survival in an independent cohort (P = .004).
Resumo:
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.