996 resultados para haptic interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the release of the Nintendo Wii in 2006, the use of haptic force gestures has become a very popular form of input for interactive entertainment. However, current gesture recognition techniques utilised in Nintendo Wii games fall prey to a lack of control when it comes to recognising simple gestures. This paper presents a simple gesture recognition technique called Peak Testing which gives greater control over gesture interaction. This recognition technique locates force peaks in continuous force data (provided by a gesture device such as the Wiimote) and then cancels any peaks which are not meant for input. Peak Testing is therefore technically able to identify movements in any direction. This paper applies this recognition technique to control virtual instruments and investigates how users respond to this interaction. The technique is then explored as the basis for a robust way to navigate menus with a simple flick of the wrist. We propose that this flick-form of interaction could be a very intuitive way to navigate Nintendo Wii menus instead of the current pointer techniques implemented.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In virtual assembly verification or remote maintenance tasks, bimanual haptic interfaces play a crucial role in successful task completion. This paper proposes a method for objectively comparing how well a haptic interface covers the reachable workspace of human arms. Two system configurations are analyzed for a recently introduced haptic device that is based on two DLR-KUKA light weight robots: the standard configuration, where the device is opposite the human operator, and the ergonomic configuration, where the haptic device is mounted behind the human operator. The human operator directly controls the robotic arms using handles. The analysis is performed using a representation of the robot arm workspace. The merits of restricting the comparisons to the most significant regions of the human workspace are discussed. Using this method, a greater workspace correspondence for the ergonomic configuration was shown. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single point interaction haptic devices do not provide the natural grasp and manipulations found in the real world, as afforded by multi-fingered haptics. The present study investigates a two-fingered grasp manipulation involving rotation with and without force feedback. There were three visual cue conditions: monocular, binocular and projective lighting. Performance metrics of time and positional accuracy were assessed. The results indicate that adding haptics to an object manipulation task increases the positional accuracy but slightly increases the overall time taken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In over forty years of research robots have made very little progress still largely confined to industrial manufacture and cute toys, yet in the same period computing has followed Moores Law where the capacity double roughly every two years. So why is there no Moores Law for robots? Two areas stand out as worthy of research to speedup progress. The first is to get a greater understanding of how human and animal brains control movement, the second to build a new generation of robots that have greater haptic sense, that is a better ability to adapt to the environment as it is encountered. A remarkable property of the cognitive-motor system in humans and animals is that it is slow. Recognising an object may take 250 mS, a reaction time of 150 mS is considered fast. Yet despite this slow system we are well designed to allow contact with the world in a variety of ways. We can anticipate an encounter, use the change of force as a means of communication and ignore sensory cues when they are not relevant. A better understanding of these process has allowed us to build haptic interfaces to mimic the interaction. Emerging from this understanding are new ways to control the contact between robots, the user and the environment. Rehabilitation robotics has all the elements in the subject to not only enable and change the lives of people with disabilities, but also to facilitate revolution change in classic robotics.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As Virtual Reality pushes the boundaries of the human computer interface new ways of interaction are emerging. One such technology is the integration of haptic interfaces (force-feedback devices) into virtual environments. This modality offers an improved sense of immersion to that achieved when relying only on audio and visual modalities. The paper introduces some of the technical obstacles such as latency and network traffic that need to be overcome for maintaining a high degree of immersion during haptic tasks. The paper describes the advantages of integrating haptic feedback into systems, and presents some of the technical issues inherent in a networked haptic virtual environment. A generic control interface has been developed to seamlessly mesh with existing networked VR development libraries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of tele-operated remote robot’s is nothing new; the public was introduced to this 'new' field in 1986 when the Chernobyl cleanup began. Pictures of weird and wonderful robotic workers pouring concrete or moving rubble flooded the world. Integration of force feedback or 'haptics' to remote robot's is a new development and one that is likely to make a big difference in man-machine interaction. Development of haptic capable tele-operation schema is a challenge. Often platform specific software is developed for one off tasks. This research focussed on the development of an open software platform for haptic control of multiple remote robotic platforms. The software utilises efficient server/client architecture for low data latency, while efficiently performing required kinematic transforms and data manipulation in real time. A description of the algorithm, software interface and hardware is presented in this paper. Preliminary results are encouraging as haptic control has been shown to greatly enhances remote positioning tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a technique for the real-time modeling of deformable tissue. Specifically geared towards needle insertion simulation, the low computational requirements of the model enable highly accurate haptic feedback to a user without introducing noticeable time delay or buzzing generally associated with haptic surgery simulation. Using a spherical voxel array combined with aspects of computational geometry and agent communication and interaction principals, the model is capable of providing haptic update rates of over 1000Hz with real-time visual feedback. Iterating through over 1000 voxels per millisecond to determine collision and haptic response while making use of Vieta’s Theorem for extraneous force culling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teleoperated mobile robots provide the ability for a human operator to safely explore and evaluate hazardous environments. This ability represents an important progression towards the preservation of human safety in the inevitable response to situations such as terrorist activities and urban search and rescue. The benefits of removing physical human presence from such environments are obvious, however challenges inhibiting task performance when remotely operating a mobile robotic system need to be addressed. The removal of physical human presence from the target environment introduces telepresence as a vital consideration in achieving the desired objective. Introducing haptic human-robotic interaction represents one approach towards improving operator performance in such a scenario. Teleoperative stair traversal proves to be a challenging task when undertaking threat response in an urban environment. This article investigates the teleoperation of an articulated track mobile robot designed for traversing stairs in a threat response scenario. Utilising a haptic medium for bilateral human-robotic interaction, the haptic cone methodology is introduced with the aim of providing the operator with a vision-independent, intuitive indication of the current commanded robot velocity. The haptic cone methodology operates synergistically with the introduced fuzzy-haptic augmentation for improving teleoperator performance in the stair traversal scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.