138 resultados para haloperidol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Delirium is frequently diagnosed in critically ill patients and is associated with poor clinical outcomes. Haloperidol is the most commonly used drug for delirium despite little evidence of its effectiveness. The aim of this study was to establish whether early treatment with haloperidol would decrease the time that survivors of critical illness spent in delirium or coma. Methods: We did this double-blind, placebo-controlled randomised trial in a general adult intensive care unit (ICU). Critically ill patients (≥18 years) needing mechanical ventilation within 72 h of admission were enrolled. Patients were randomised (by an independent nurse, in 1:1 ratio, with permuted block size of four and six, using a centralised, secure web-based randomisation service) to receive haloperidol 2·5 mg or 0·9% saline placebo intravenously every 8 h, irrespective of coma or delirium status. Study drug was discontinued on ICU discharge, once delirium-free and coma-free for 2 consecutive days, or after a maximum of 14 days of treatment, whichever came first. Delirium was assessed using the confusion assessment method for the ICU (CAM-ICU). The primary outcome was delirium-free and coma-free days, defined as the number of days in the first 14 days after randomisation during which the patient was alive without delirium and not in coma from any cause. Patients who died within the 14 day study period were recorded as having 0 days free of delirium and coma. ICU clinical and research staff and patients were masked to treatment throughout the study. Analyses were by intention to treat. This trial is registered with the International Standard Randomised Controlled Trial Registry, number ISRCTN83567338. Findings: 142 patients were randomised, 141 were included in the final analysis (71 haloperidol, 70 placebo). Patients in the haloperidol group spent about the same number of days alive, without delirium, and without coma as did patients in the placebo group (median 5 days [IQR 0-10] vs 6 days [0-11] days; p=0·53). The most common adverse events were oversedation (11 patients in the haloperidol group vs six in the placebo group) and QTc prolongation (seven patients in the haloperidol group vs six in the placebo group). No patient had a serious adverse event related to the study drug. Interpretation: These results do not support the hypothesis that haloperidol modifies duration of delirium in critically ill patients. Although haloperidol can be used safely in this population of patients, pending the results of trials in progress, the use of intravenous haloperidol should be reserved for short-term management of acute agitation. Funding: National Institute for Health Research. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine (DA) is known to regulate both sleep and memory formations, while sleep plays a critical role in the consolidation of different types of memories. We believe that pharmacological manipulation of dopaminergic pathways might disrupt the sleep-wake cycle, leading to mnemonic deficits, which can be observed in both behavioral and molecular levels. Therefore, here we investigated how systemic injections of haloperidol (0.3 mg/kg), immediately after training in dark and light periods, affects learning assessed in the novel object preference test (NOPT) in mice. We also investigated the hippocampal levels of the plasticity-related proteins Zif-268, brain-derived neurotrophic factor (BDNF) and phosphorylated Ca2+/calmodulin-dependent protein kinases II (CaMKII-P) in non-exposed (naïve), vehicle-injected controls and haloperidol-treated mice at 3, 6 and 12 hours after training in the light period. Haloperidol administration during the light period led to a subsequent impairment in the NOPT. In contrast, preference was not observed during the dark period neither in mice injected with haloperidol, nor in vehicle-injected animals. A partial increase of CaMKII-P in the hippocampal field CA3 of vehicle-injected mice was detected at 3h. Haloperidol-treated mice showed a significant decrease in the dentate gyrus of CaMKII-P levels at 3, 6 and 12h; of Zif-268 levels at 6h, and of BDNF levels at 12h after training. Since the mnemonic effects of haloperidol were only observed in the light period when animals tend to sleep, we suggest that these effects are related to REM sleep disruption after haloperidol injection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the possible effects of reproductive experience on dopaminergic profile in three different brain tissues, hypothalamus, striatum and cortex in rats on 7th-8th day of pregnancy during the light-dark shift (between 1700-1900h). Results showed that in hypothalamus, dopamine levels increased and DOPAC/DA decreased as a function of parity. In cortex, no differences were observed. In striata, the haloperidol-induced HVA and HVA/DA increases were less intense in experienced animals. These findings suggested that reproductive experience produced functional central changes during pregnancy, with different neurochemical responses depending on the brain region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of DA antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and DA actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of DA through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of DA through D, receptors and in other part by inhibition of stimulatory action of DA through D2 receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-phase liquid-phase microextraction (LPME) method using porous polypropylene hollow fibre membrane with a sealed end was developed for the extraction of mirtazapine (MRT) and its two major metabolites, 8-hydroxymirtazapine (8-OHM) and demethylmirtazapine (DMR), from human plasma. The analytes were extracted from 1.0 mL of plasma, previously diluted and alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% sodium chloride (NaCl), using n-hexyl ether as organic solvent and 0.01 moL L-1 acetic acid solution as the acceptor phase. Haloperidol was used as internal standard. The chromatographic analyses were carried out on a chiral column, using acetonitrile-methanol-ethanol (98:1:1, v/v/v) plus 0.2% diethylamine as mobile phase, at a flow rate of 1.0 mL min(-1). Multi-reaction monitoring (MRM) detection was performed by mass spectrometry (MS-MS) using a triple-stage quadrupole and electrospray ionization interface operating in the positive ion mode. The mean recoveries were in 18.3-45.5% range with linear responses over the 1.25-125 ng mL(-1) concentration range for all enantiomers evaluated. The quantification limit (LOQ) was 1.25 ng mL(-1). Within-day and between-day assay precision and accuracy (2.5, 50 and 100 ng mL(-1)) showed relative standard deviation and the relative error lower than 11.9% for all enantiomers evaluated. Finally, the method was successfully used for the determination of mirtazapine and its metabolite enantiomers in plasma samples obtained after single drug administration of mirtazapine to a healthy volunteer. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improved drug therapy for schizophrenia may represent the best strategy for reducing the costs of schizophrenia and the recurrent chronic course of the disease. Olanzapine and risperidone are atypical antipsychotic agents developed to meet this need. We report a multicenter, double-blind, parallel, 30-week study designed to compare the efficacy, safety, and associated resource use for olanzapine and risperidone in Australia and New Zealand. The study sample consisted of 65 patients who met DSM-IV criteria for schizophrenia, schizoaffective disorder, or schizophreniform disorder. Olanzapine-treated patients showed a significantly greater reduction in Positive and Negative Syndrome Scale (PANSS) total, Brief Psychiatric Rating Scale (BPRS) total, and PANSS General Psychopathology scores at endpoint compared to the risperidone-treated patients. Response rates through 30 weeks showed a significantly greater proportion of olanzapine-treated patients had achieved a 20% or greater improvement in their PANSS total score compared to risperidone-treated patients. Olanzapine and risperidone were equivalent in their improvement of PANSS positive and negative scores and Clinical Global Impression-Severity of Illness scale (CGI-S) at endpoint. Using generic and disease-specific measures of quality of life, olanzapine-treated patients showed significant within-group improvement in most measures, and significant differences were observed in favor of olanzapine over risperidone in Quality of Life Scale (QLS) Intrapsychic Foundation and Medical Outcomes Study Short Form 36-item instrument (SF-36) Role Functioning Limitations-Emotional subscale scores. Despite the relatively small sample size, our study suggests that olanzapine has a superior risk:benefit profile compared to risperidone. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: There is growing evidence that vitamin D is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, we have explored the role of vitamin D in the developing brain and behaviour using whole animal models. Methods: Sprague-Dawley rats were fed a vitamin D deficient diet (DVD) or control diet 6 weeks prior to mating and housed under UVB-free lighting conditions. On the day of birth all rats were fed a control diet for the remainder of the study. We observed behaviour at two timepoints; on the day of birth to study maternal behaviour, and at 10 weeks of age to study offspring behaviour in adulthood, under baseline and drug induced conditions (MK-801, haloperidol, amphetamine). Results: Prenatal vitamin D deficiency results in subtle alterations in maternal behaviour as well as long lasting effects on the adult offspring, despite a return to normal vitamin D levels during postnatal life. These affects were specific to transient prenatal vitamin D depletion as adult vitamin D depletion, combined prenatal and chronic postnatal vitamin D depletion, or ablation of the vitamin D receptor in mice led to markedly different outcomes. Conclusions: The developmental vitamin D (DVD) model now draws strength from epidemiological evidence of schizophrenia and animal experiments. Although the DVD model does not replicate every aspect of schizophrenia, it has several attractive features: (1) the exposure is based on clues from epidemiology; (2) it reproduces the increase in lateral ventricles; (3) it reproduces well-regarded behavioural phenotypes associated with schizophrenia (e.g. MK- 801 induced hyperlocomotion); and (4) it implicates a disturbance in dopamine signaling. In summary, low prenatal levels of vitamin D can influence critical components of orderly brain development and that this has a long lasting effect on behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aripiprazole is an atypical antipsychotic that acts as a partial agonist at the dopamine D-2 receptor. It has been mainly investigated in dopamine-based models of schizophrenia, while its effects on glutamate-based paradigms have remained to be further characterized. Due to its unique mechanism of action, aripiprazole has also been considered as a replacement medication for psychostimulant abuse. Thus, in the present study we tested the hypothesis that aripiprazole would prevent the motor hyperactivity induced by psychostimulant and psychotomimetic drugs that act either by dopaminergic or glutamatergic mechanisms. Male Swiss mice received injections of aripiprazole (0.1-1 mg/kg) followed by drugs that enhance the dopamine-mediated neurotransmission, amphetamine (3 mg/kg) or cocaine (5 mg/kg), or by glutamate NMDA-receptor antagonists, ketamine (60 mg/kg) or MK-801 (0.4 mg/kg). Independent groups also received aripiprazole (0.1-1 mg/kg) or haloperidol (0.5 mg/kg) and were tested for catalepsy. All doses of aripiprazole were effective in preventing the motor stimulant effects of amphetamine and cocaine. Moreover, the higher dose also prevented the effects of ketamine and MK-801. The present study reports the effects of aripiprazole in dopaminergic and glutamatergic models predictive of antipsychotic activity, suggesting that both may be useful for screening novel partial agonists with antipsychotic activity. It also shows that aripiprazole may prevent the acute effects of psychostimulant drugs without significant motor impairment. C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical injuries in both the mother and pups. Previous investigations by our group showed that prenatal LPS administration (100 mu g/kg, i.p.) on gestational day 9.5 impaired the male offspring`s social behavior in infancy and adulthood. In the present study, we investigated whether these social behavioral changes were associated with motor activity impairment. Male rat pups treated prenatally with LPS or not were tested for reflexological development and open field general activity during infancy. In adulthood, animals were tested for open field general activity, haloperidol-induced catalepsy and apomorphine-induced stereotypy; striatal dopamine levels and turnover were also measured. Moreover, LPS-treated or untreated control pups were challenged with LPS in adulthood and observed for general activity in the open field. In relation to the control group, the motor behavior of prenatally treated male pups was unaffected at basal levels, both in infancy and in adulthood, but decreased general activity was observed in adulthood after an immune challenge. Also, striatal dopamine and metabolite levels were decreased in adulthood. In conclusion, prenatal LPS exposure disrupted the dopaminergic system involved with motor function, but this neurochemical effect was not accompanied by behavioral impairment, probably due to adaptive plasticity processes. Notwithstanding, behavioral impairment was revealed when animals were challenged with LPS, resulting in enhanced sickness behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.