313 resultados para guaifenesin-ketamine-xylazine


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of ketamine S (+) 5% with no preservatives and administered as a subarachnoid single puncture on the spinal cord and meninges of rabbits.METHODS: Twenty young adult female rabbits, each weighing 3500-5000 g and having a spine length between 34 and 38 cm, were divided by lot into two groups (G): 0.9% saline in G1 and ketamine S (+) 5% in G2, by volume of 5 μg per cm column (0.18 mL). After intravenous anaesthesia with ketamine and xylazine, the subarachnoid space was punctured at S1-S2 under ultrasound guidance, and a random solution was injected. The animals remained in captivity for 21 days under medical observation and were sacrificed by decapitation. The lumbosacral spinal cord portion was removed for immunohistochemistry to assess the glial fibrillary acidic protein (GFAP), and histology was assessed using hematoxylin and eosin (HE) stain.RESULTS:No histological lesions were found in the nervous tissue (roots and cord) or meninges in either group.CONCLUSION: The ketamine S (+) 5% unpreserved triggered no neurological or histological lesions in the spinal cord or meninges of rabbits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The total intravenous anesthesia (TIVA) is an option for some surgeries in bovines for fields. The aim of this study was to evaluate blood gases effects, cardiorespiratory and glycemia on calves submitted the umbilical herniorraphy. We used eight calves aged from 9 ± 4 months, weighting 111 ± 43 kg. The animals were pre-treated with xylazine (0.05 mg/kg IV) and after 15 minutes was administered ketamine (2.0 mg/kg IV) followed by the continuous infusion of xylazine (0.05 mg/ml), guaifenesin (50 mg/mL) and ketamine (1mg/ml) at a rate of infusion of 2mL/kg/hour. The blood gases and glucose samples were collected immediately before the MPA (MB) and the 5, 40 and 80 after the starting of TIVA (M5, M40 e M80). The other variables were measured in MB, 15 minutes after the MPA (Mx) and every 10 minutes after the starting of TIVA, entiring 80 minutes. The heart rate was higher in MB than in the other stages (p <0.05) and respiratory rate increased in M20 and M50 compared to MB and Mx (p <0.05). The PvCO2 increased while PaO2 decreased in M40 and M80, for MB (p <0.05), PVCO2 in M80 was lower than in MB (p <0.05). The pHv was smaller in M80 than M5 and MB (p <0.05), and HCO3 was lower in MB (p <0.05) compared to the others. The glucose was higher in M40 and M80 and M5 for MB (p <0.05). The recovery time was 152 ± 60 minutes after the end of the administration of the infusion of anesthetics. It was conclude that the anesthetic technique employed promoted respiratory depression, increased blood glucose and prolonged period of anesthetic recovery in calves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate cytochrome P450 (CYP) enzymes involved in metabolism of racemic and S-ketamine in various species and to evaluate metabolic interactions of other analgesics with ketamine. SAMPLE POPULATION: Human, equine, and canine liver microsomes. PROCEDURES: An analgesic was concurrently incubated with luminogenic substrates specific for CYP 3A4 or CYP 2C9 and liver microsomes. The luminescence signal was detected and compared with the signal for negative control samples. Ketamine and norketamine enantiomers were determined by use of capillary electrophoresis. RESULTS: A concentration-dependent decrease in luminescence signal was detected for ibuprofen and diclofenac in the assay for CYP 2C9 in human and equine liver microsomes but not in the assay for CYP 3A4 and methadone or xylazine in any of the species. Coincubation of methadone or xylazine with ketamine resulted in a decrease in norketamine formation in equine and canine liver microsomes but not in human liver microsomes. In all species, norketamine formation was not affected by ibuprofen, but diclofenac reduced norketamine formation in human liver microsomes. A higher rate of metabolism was detected for S-ketamine in equine liver microsomes, compared with the rate for the S-enantiomer in the racemic mixture when incubated with any of the analgesics investigated. CONCLUSIONS AND CLINICAL RELEVANCE: Enzymes of the CYP 3A4 family and orthologs of CYP 2C9 were involved in ketamine metabolism in horses, dogs, and humans. Methadone and xylazine inhibited in vitro metabolism of ketamine. Therefore, higher concentrations and diminished clearance of ketamine may cause adverse effects when administered concurrently with other analgesics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To compare anesthesia recovery quality after racemic (R-/S-) or S-ketamine infusions during isoflurane anesthesia in horses. ANIMALS: 10 horses undergoing arthroscopy. PROCEDURES: After administration of xylazine for sedation, horses (n = 5/group) received R-/S-ketamine (2.2 mg/kg) or S-ketamine (1.1 mg/kg), IV, for anesthesia induction. Anesthesia was maintained with isoflurane in oxygen and R-/S-ketamine (1 mg/kg/h) or S-ketamine (0.5 mg/kg/h). Heart rate, invasive mean arterial pressure, and end-tidal isoflurane concentration were recorded before and during surgical stimulation. Arterial blood gases were evaluated every 30 minutes. Arterial ketamine and norketamine enantiomer plasma concentrations were quantified at 60 and 120 minutes. After surgery, horses were kept in a padded recovery box, sedated with xylazine, and video-recorded for evaluation of recovery quality by use of a visual analogue scale (VAS) and a numeric rating scale. RESULTS: Horses in the S-ketamine group had better numeric rating scale and VAS values than those in the R-/S-ketamine group. In the R-/S-ketamine group, duration of infusion was positively correlated with VAS value. Both groups had significant increases in heart rate and mean arterial pressure during surgical stimulation; values in the R-/S-ketamine group were significantly higher than those of the S-ketamine group. Horses in the R-/S-ketamine group required slightly higher end-tidal isoflurane concentration to maintain a surgical plane of anesthesia. Moderate respiratory acidosis and reduced oxygenation were evident. The R-norketamine concentrations were significantly lower than S-norketamine concentrations in the R-/S-ketamine group. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with R-/S-ketamine, anesthesia recovery was better with S-ketamine infusions in horses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ketamine, an N-methyl-D-aspartate (NMDA) antagonist, on memory in animals have been limited to the sub-anesthetic dose given prior to training in previous studies. We evaluated the effects of post-training anesthetic doses of ketamine to se

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objectives: Pentobarbital and ketamine are commonly used in animal experiments, including studies on the effects of ageing on the central nervous system. The electroencephalogram is a sensitive measure of brain activity. The present study i

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: We studied the effects on intraocular pressure (IOP) of anesthesia administered during examination under anesthesia (EUA) in children. DESIGN: Randomized clinical trial. METHODS: This randomized trial compared IOP after inhaled sevoflurane gas to that after intramuscular ketamine hydrochloride in children undergoing EUA. IOP was measured in 30 eyes with TonoPen XL (Mentor, Inc, Norwell, Massachusetts, USA) as soon as possible after anesthesia induction (T1) and two, four, six, and eight minutes thereafter. At the same times, we recorded systolic and diastolic blood pressure (SBP, DBP) and heart rate (HR). RESULTS: Compared with the mean IOP at T1, IOP in the sevoflurane group was significantly lower for all measurements from two to eight minutes thereafter (mean decrease in IOP: two minutes = 12%, four minutes = 19%; six minutes = 19%; eight minutes = 17%, all P < or = .01). In the ketamine group, mean IOP was not significantly changed from T1 through six minutes, whereas at eight minutes, it was 7% lower (P = .03). SBP and DBP were significantly lower for sevoflurane than for ketamine at all measurements from two minutes onward, and HR was lower for sevoflurane than for ketamine at two, four, and six minutes. CONCLUSIONS: IOP measured after ketamine sedation is more likely to represent the awake IOP than that after sevoflurane anesthesia. Changes in SBP, DBP, and HR caused by sevoflurane suggest that hemodynamic alterations may underlie its effects on IOP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ketamine is widely used in medicine in combination with several benzodiazepines including midazolam. The objectives of this study were to develop a novel HPLC-MS/SRM method capable of quantifying ketamine and norketamine using an isotopic dilution strategy in biological matrices and study the formation of norketamine, the principal metabolite of ketamine with and without the presence of midazolam, a well-known CYP3A substrate. The chromatographic separation was achieved using a Thermo Betasil Phenyl 100 x 2 mm column combined with an isocratic mobile phase composed of acetonitrile, methanol, water and formic acid (60:20:20:0.4) at a flow rate of 300 μL/min. The mass spectrometer was operating in selected reaction monitoring mode and the analytical range was set at 0.05–50 μM. The precision (%CV) and accuracy (%NOM) observed were ranging from 3.9–7.8 and 95.9.2–111.1% respectively. The initial rate of formation of norketamine was determined using various ketamine concentration and Km values of 18.4 μM, 13.8 μM and 30.8 μM for rat, dog and human liver S9 fractions were observed respectively. The metabolic stability of ketamine on liver S9 fractions was significantly higher in human (T1/2 = 159.4 min) compared with rat (T1/2 = 12.6 min) and dog (T1/2 = 7.3 min) liver S9 fractions. Moreover significantly lower IC50 and Ki values observed in human compared with rat and dog liver S9 fractions. Experiments with cDNA expressed CYP3A enzymes showed the formation of norketamine is mediated by CYP3A but results suggest an important contribution from others isoenzymes, most likely CYP2C particularly in rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first in a short series of articles that focus on what GPs should consider when monitoring and prescribing specialist-initiated palliative-care drugs. This first article summarises the key issues for patients receiving ketamine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ketamine and propofol are two well-known, powerful anesthetic agents, yet at first sight this appears to be their only commonality. Ketamine is a dissociative anesthetic agent, whose main mechanism of action is considered to be N-methyl-D-aspartate (NMDA) antagonism; whereas propofol is a general anesthetic agent, which is assumed to primarily potentiate currents gated by γ-aminobutyric acid type A (GABAA) receptors. However, several experimental observations suggest a closer relationship. First, the effect of ketamine on the electroencephalogram (EEG) is markedly changed in the presence of propofol: on its own ketamine increases θ (4–8 Hz) and decreases α (8–13 Hz) oscillations, whereas ketamine induces a significant shift to beta band frequencies (13–30 Hz) in the presence of propofol. Second, both ketamine and propofol cause inhibition of the inward pacemaker current Ih, by binding to the corresponding hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 (HCN1) subunit. The resulting effect is a hyperpolarization of the neuron’s resting membrane potential. Third, the ability of both ketamine and propofol to induce hypnosis is reduced in HCN1-knockout mice. Here we show that one can theoretically understand the observed spectral changes of the EEG based on HCN1-mediated hyperpolarizations alone, without involving the supposed main mechanisms of action of these drugs through NMDA and GABAA, respectively. On the basis of our successful EEG model we conclude that ketamine and propofol should be antagonistic to each other in their interaction at HCN1 subunits. Such a prediction is in accord with the results of clinical experiment in which it is found that ketamine and propofol interact in an infra-additive manner with respect to the endpoints of hypnosis and immobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the sedative, cardiopulmonary, and gastrointestinal effects produced by buprenorphine and xylazine given in combination to horses. Six healthy adult horses underwent 4 randomized treatments, with an interval of 1 wk between treatments. A control group was given a saline solution intravenously (IV) and the experimental groups received buprenorphine [10 mu g/kg bodyweight (BW)] in combination with 1 of 3 different doses of xylazine: 0.25 mg/kg BW (BX25), 0.50 mg/kg BW (BX50), or 0.75 mg/kg BW (BX75), all of them by IV. Cardiopulmonary parameters were evaluated for 120 min after the drugs were administered and intestinal motility was observed for 12 h after treatment. Sedation was found to be dose-dependent in all groups receiving buprenorphine and xylazine and it was observed that the heart rate decreased in the first 5 min and increased at the end of the sedation period. Arterial blood gas tension analyses showed minimal alterations during the experiment. Gastrointestinal hypomotility was observed for up to 8 h. The combination of buprenorphine and 0.50 mg/kg BW of xylazine (BX50) provided a 30-minute period of sedation without intense ataxia and maintained cardiopulmonary parameters within acceptable limits for the species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that higher order oscillatory interactions such as cross-frequency coupling are important for brain functions that are impaired in schizophrenia, including perception, attention and memory. Here we investigated the dynamics of oscillatory coupling in the hippocampus of awake rats upon NMDA receptor blockade by ketamine, a pharmacological model of schizophrenia. Ketamine (25, 50 and 75 mg/kg i.p.) increased gamma and high-frequency oscillations (HFO) in all depths of the CA1-dentate axis, while theta power changes depended on anatomical location and were independent of a transient increase of delta oscillations. Phase coherence of gamma and HFO increased across hippocampal layers. Phase-amplitude coupling between theta and fast oscillations was markedly altered in a dose-dependent manner: ketamine increased hippocampal theta-HFO coupling at all doses, while theta-gamma coupling increased at the lowest dose and was disrupted at the highest dose. Our results demonstrate that ketamine alters network interactions that underlie cognitively relevant theta-gamma coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-To compare the pre-emptive analgesic effects of epidural ketamine or S(+)-ketamine on post-incisional hyperalgesia.Study Design-Prospective randomized study.Animals-Twenty-four mongrel dogs (1-5 years, weighing 11.9 +/- 1.8 kg).Methods-Dogs were anesthetized with propofol (5 mg/kg intravenously) and a lumbosacral epidural catheter was placed. Dogs were randomly allocated to 3 groups, each with 8 dogs. The control group (CG) was administered saline solution (0.3 mL/kg); the ketamine group (KG) ketamine (0.6 mg/kg); and the S(+)-ketamine group (SG) S(+)-ketamine (0.6 mg/kg). The final volume was adjusted to 0.3 mL/kg in all groups. Five minutes after the epidural injection a surgical incision was made in the common pad of the right hind limb and was immediately closed with simple interrupted nylon suture. Respiratory (RR) and heart (HR) rates, rectal temperature (7, sedation (S), lameness score, and mechanical nociceptive threshold by von Frey filaments were evaluated before the propofol anesthesia and at 15, 30, 45, 60, 75, and 90 minutes and then at 2, 4, 6, 8, 12, and 24 hours after epidural injection.Results-There were no differences in RR, HR, T, or S between groups. Motor blockade of the hind limbs was observed during 20 +/- 3.6 minutes in KG and during 30.6 +/- 7.5 minutes in SG (mean SD). Mechanical force applied to obtain an aversive response was higher from 45 minutes to 12 hours in KG and from 60 to 90 minutes in SG, when compared with CG.Conclusions-Pre-emptive epidural ketamine induced no alterations in RR and FIR, and reduced post-incisional hyperalgesia for a longer time than did S(+) ketamine.Clinical Relevance-Although anesthetic and analgesic potency of S(+) ketamine is twice that of ketamine, the racemic form is seemingly better for post-incisional hyperalgesia. (C) Copyright 2004 by the American College of Veterinary Surgeons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the cardiorespiratory effects of continuous infusion of ketamine in hypovolemic dogs anesthetized with desflurane.Design: A prospective experimental study.Animals: Twelve mixed breed dogs allocated into 2 groups: saline (n=6) and ketamine (n=6).Interventions: After obtaining baseline measurements (time [T] 0) in awake dogs, hypovolemia was induced by the removal of 40 mL of blood/kg over 30 minutes. Anesthesia was induced and maintained with desflurane (1.5 minimal alveolar concentration) and 30 minutes later (T75) a continuous intravenous (IV) infusion of saline or ketamine (100 mu g/kg/min) was initiated. Cardiorespiratory evaluations were obtained 15 minutes after hemorrhage (T45), 30 minutes after desflurane anesthesia, and immediately before initiating the infusion (T75), and 5 (T80), 15 (T90), 30 (T105) and 45 (T120) minutes after beginning the infusion.Measurements and main results: Hypovolemia (T45) reduced the arterial blood pressures (systolic arterial pressure, diastolic arterial pressure [DAP] and mean arterial pressure [MAP]), cardiac (CI) and systolic (SI) indexes, and mean pulmonary arterial pressure (PAP) in both groups. After 30 minutes of desflurane anesthesia (T75), an additional decrease of MAP in both groups was observed, heart rate was higher than T0 at T75, T80, T90 and T105 in saline-treated dogs only, and the CI was higher in the ketamine group than in the saline group at T75. Five minutes after starting the infusion (T80), respiratory rate (RR) was lower and the end-tidal CO(2) (ETCO(2)) was higher compared with values at T45 in ketamine-treated dogs. Mean values of ETCO(2) were higher in ketamine than in saline dogs between T75 and T120. The systemic vascular resistance index (SVRI) was decreased between T80 and T120 in ketamine when compared with T45.Conclusions: Continuous IV infusion of ketamine in hypovolemic dogs anesthetized with desflurane induced an increase in ETCO(2), but other cardiorespiratory alterations did not differ from those observed when the same concentration of desflurane was used as the sole anesthetic agent. However, this study did not evaluate the effectiveness of ketamine infusion in reducing desflurane dose requirements in hypovolemic dogs or the cardiorespiratory effects of ketamine-desflurane balanced anesthesia.