300 resultados para gruppi liberi
Resumo:
La struttura di gruppo è una delle strutture algebriche più semplici e importanti della matematica. Un gruppo si può descrivere in vari modi: uno dei più interessanti è la presentazione per generatori e relazioni. Sostanzialmente presentare un gruppo per generatori e relazioni significa dire quali specifiche ”regole di calcolo” e semplificazione valgono nel gruppo in considerazione oltre a quelle che derivano dagli assiomi di gruppo. Questo porta in particolare alla definizione di gruppo libero. Un gruppo libero non ha regole di calcolo oltre quelle derivanti dagli assiomi di gruppo. Ogni gruppo è un quoziente di un gruppo libero su un appropriato insieme di generatori per un sottogruppo normale, generato dalle relazioni. In questa tesi si ricordano le definizioni più importanti ed elementari della teoria dei gruppi e si passa in seguito a discutere il gruppo libero e le presentazioni di gruppi con generatori e relazioni, dando alcuni esempi. La tesi si conclude illustrando l’algoritmo di Coxeter e Todd, per enumerare le classi laterali di un sottogruppo quando si ha un gruppo presentato per generatori e relazioni.
Resumo:
Studio dei gruppi topologici, ovvero degli spazi topologici che possiedono anche una struttura di gruppo; le due strutture sono legate dal fatto che le applicazioni di gruppo sono continue.
Resumo:
Questa tesi introduce alla teoria delle rappresentazioni dei gruppi finiti. Il primo capitolo mostra che lo studio delle rappresentazioni di un dato gruppo può essere ridotto a quello delle rappresentazioni irriducibili. Il secondo capitolo, utilizzando la teoria del carattere, determina il numero di rappresentazioni irriducibili del gruppo. Il terzo capitolo, attraverso l'algebra di gruppo, individua alcune proprietà della dimensione delle rappresentazioni irriducibili. Infine, nell'ultimo capitolo, vengono trattate le rappresentazioni irriducibili dei gruppi simmetrici S_3 e S_4.
Resumo:
Il teorema di Chevalley-Shephard-Todd è un importante risultato del 1954/1955 nella teoria degli invarianti polinomiali sotto l'azione del gruppo delle matrici invertibili. Lo scopo di questa tesi è presentare e dimostrare il teorema nella versione in cui l'anello dei polinomi ha come campo base R e di vedere alcuni esempi concreti di applicazione del teorema. Questa dimostrazione può essere generalizzata facilmente avendo come campo base un qualsiasi campo K di caratteristica 0.
Resumo:
Tesi compilativa riguardo definizione, proprietà e metodi di calcolo di Gruppi superiori di omotopia. Argomenti:definizioni, gruppi delle sfere, proprietà, sospensione, proiezioni di rivestimento, spazi fibrati, approssimazione cellulare, gruppi stabili di omotopia, esempi.
Resumo:
Si inizia generalizzando la teoria dei gruppi a categorie qualsiasi, quindi senza necessariamente un insieme sostegno, studiando anche i cogruppi, ovvero gli oggetti duali dei gruppi, e caratterizzando in termini categoriali tali strutture. Vengono poi studiati oggetti topologici con la struttura di gruppo generalizzato vista inizialmente, compatibile con la struttura topologica. L'utilità degli H-gruppi e dei co-H-gruppi è specialmente in topologia algebrica, dove la struttura di questi oggetti fornisce molte informazioni sul loro comportamento, in termini di gruppi di omotopia e di più generici gruppi di mappe fra loro e altri spazi. Vengono poi dati esempi di questi oggetti, e si studia come i co-H-gruppi, in particolare, permettono di definire i gruppi di omotopia e di dimostrare i risultati fondamentali della teoria dell'omotopia.
Resumo:
Lo scopo di questa tesi è dimostrare il Principio Forte di Continuazione Unica per opportune soluzioni di un'equazione di tipo Schrödinger Du=Vu, ove D è il sub-Laplaciano canonico di un gruppo di tipo H e V è un potenziale opportuno. Nel primo capitolo abbiamo esposto risultati già noti in letteratura sui gruppi di tipo H: partendo dalla definizione di tali gruppi, abbiamo fornito un'utile caratterizzazione in termini "elementari" che permette di esplicitare la soluzione fondamentale dei relativi sub-Laplaciani canonici. Nel secondo capitolo abbiamo mostrato una formula di rappresentazione per funzioni lisce sui gruppi di tipo H, abbiamo dimostrato una forma forte del Principio di Indeterminazione di Heisenberg (sempre nel caso di gruppi di tipo H) e abbiamo fornito una formula per la variazione prima dell'integrale di Dirichlet associato a Du=Vu. Nel terzo capitolo, infine, abbiamo analizzato le proprietà di crescita di funzioni di frequenza, utili a dimostrare le stime integrali che implicano in modo piuttosto immediato il Principio Forte di Continuazione Unica, principale oggetto del nostro studio.
Resumo:
La tesi si basa sulla descrizione dei p-gruppi di ordine finito, definiti p-gruppi, cioè quei gruppi che hanno come cardinalità una potenza di un numero primo. Vengono enunciati i teoremi di Sylow e le sue conseguenze. Infine si discute il teorema fondamentale sui gruppi abeliani finiti e la funzione di Eulero.
Resumo:
Tesi in algebra che propone uno studio parallelo di risolubilità e nilpotenza nei gruppi e nelle algebre di Lie. Vengono descritte dapprima le algebre di Lie in modo da fornire una conoscenza preliminare riguardo a questa struttura algebrica. In seguito esse vengono messe a confronto con i gruppi sotto l'aspetto appunto di risolubilità e nilpotenza.
Resumo:
Questo elaborato tratta della progettazione e della realizzazione di una serie di gruppi funzionali di un impianto automatico per l'applicazione, tramite colla, di carta assorbente o pluriball all'interno di vaschette alimentari. Il sistema progettato si inserisce all'interno di una linea produttiva, tipicamente tra una macchina termoformatrice e una tranciatrice.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Lechus carmen heoricum, regni aurei & liberi primordia & vetustatem fortunamq[u]e variam decantans /
Resumo:
Mode of access: Internet.
Resumo:
Ref. en ICCU.
Resumo:
Mode of access: Internet.